
TOSHIBA BiCMOS Integrated Circuit Silicon Monolithic

TB9044AFNG

DCDC Convertor & Multi Output Regulator

TB9044AFNG is a multi output power supply IC for automotive system power supply incorporating a DCDC convertor, a series power supply and 3 tracking regulators. Both high efficiency and low noise output are concurrently achieved by a DCDC power supply and a series power supply, respectively.

It incorporates various monitoring functions for abnormalities in power supply and MCU, and enables transmitting monitoring statuses to an external system via SPI communication.

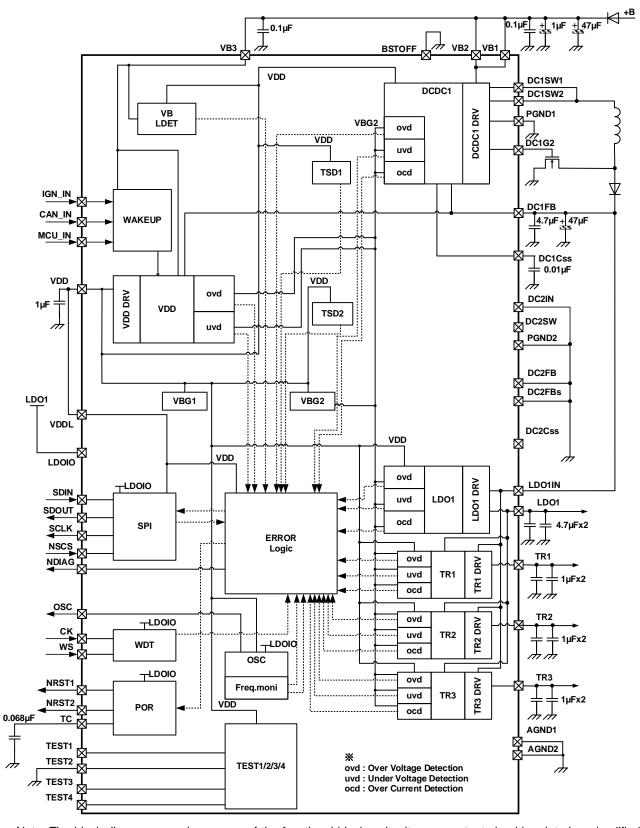
HTSSOP48-P-300-0.50 Weight: 204.6mg (typ.)

1 Features

- DCDC convertor circuits
 - DCDC1: Synchronous rectifying buck-boost convertor with built-in 6V output
- 4built-in output series power supply circuits
 - LDO1: Output voltage 5.0V
 - TR1 to 3 output voltage LDO1 and tuning voltage (3 ch)
- Output voltage monitoring & reset output
 - High voltage & low voltage & overcurrent monitoring
 - Power-on reset (2-channel output pins)
 - Watchdog timer
- Built-in SPI communication
 - To output notification signals for various abnormalities in a power supply function
- 2-channel built-in reference voltage circuits (Main function and monitoring function)
- Built-in oscillator circuit
- Built-in frequency monitoring function for oscillator circuit
- Built-in Analog BIST
- Built-in Logic BIST
- Operating temperature range: -40 to 125 °C
 - Package: HTSSOP48-P-300-0.50
- AEC-Q100 Qualified
- TM-SILTM

1.1

- Developed according to ISO 26262 ASIL-D
- Safety Manual and Safety Analysis Report
- Functional redundancy and built-in ABIST and LBIST
- SPI interface with CRC check


The product(s) is/are compatible with RoHS regulations (EU directive 2011 / 65 / EU) as indicated, if any, on the packaging label ("[[G]]/RoHS COMPATIBLE", "[[G]]/RoHS [[Chemical symbol(s) of controlled substance(s)]]", "RoHS COMPATIBLE" or "RoHS COMPATIBLE, [[Chemical symbol(s) of controlled substance(s)]]>MCV").

© 2015-2019
Toshiba Electronic Devices & Storage Corporation

1

2 Block diagram

Note: The block diagram may show some of the functional blocks, circuits, or constants in abbreviated or simplified format for clarity in describing the relevant features.

3 Pin description

No.	Pin name	I/O	Function	Configuration	Pull-u	p/down	Remarks
1	LDOIO	I	Pull-up power supply of MCU I/F pin and IO buffer connection pin	_	_	_	Connect it to LDO1.
2	TEST1	I	Test pin	BIP	_	_	Leave this pin open.
3	VDDL	l	Logic power input pin	_	<u> </u>	_	Connect it to VDD.
4	VDD	0	VDD power output pin for internal circuit	DMOS		<u> </u>	
5	BSTOFF	1	Switching pin between buck-boost mode/buck mode	CMOS	PD	50kΩ	Connection to AGND in buck- boost mode, connection to VDD in buck mode.
6	DC1Css	I/O	DCDC1 soft start time setting pin	CMOS			
7	MCU_IN	<u> </u>	Wake-up signal input pin from MCU	CMOS	PD	100kΩ	<u> </u>
8	SDIN	I	SPI serial data input pin	CMOS	PD	50kΩ	-
9	SDOUT	0	SPI serial data output pin	CMOS		<u> </u>	-
10	SCLK	I	SPI clock input pin	CMOS	PD	50kΩ	<u> </u>
11	NSCS	l 	SPI chip select pin	CMOS	PU	50kΩ	It is pulled up to LDOIO inside IC.
12	NC	-	Non connection pin	_	<u> </u>	_	Leave this pin open.
13	TR1	0	Tracker output 1	DMOS	_	<u> </u>	<u>—</u>
14	TR2	0	Tracker output 2	DMOS		_	
15	TR3	0	Tracker output 3	DMOS		<u> </u>	
16	AGND1	- 	GND	 	_	<u> </u>	lt is pulled up to
17	NRST1	0	Reset signal output pin 1 (for MCU)	O.D.	PU	4.7kΩ	It is pulled up to LDOIO inside IC.
18	OSC	0	Clock output	CMOS			_
19	NDIAG	0	Output pin for flag signal notifying error information	O.D.	PU	4.7kΩ	It is pulled up to LDOIO inside IC.
20	TEST2	I	Test pin	CMOS	PD	50kΩ	Connect it to GND.
21	CK	ı	Watchdog clock input pin	CMOS	PD	50kΩ	-
22	TC	I/O	Time setting capacitor pin for reset timer	CMOS		_	_
23	TEST3	0	Test pin	CMOS	_	_	Leave this pin open.
24	WS	1	Switching pin between ON/OFF of watchdog function	CMOS	PD	50kΩ	Function turned on at L input and function turned off at H input
25	NRST2	0	Reset signal output pin 2 (for driver)	O.D.	PU	4.7kΩ	It is pulled up to LDOIO inside IC.
26	TEST4	0	Test pin	CMOS	<u> </u>	_	Leave this pin open.
27	DC2Css	_	-	_	_	_	Leave this pin open.
28	DC2FBs	_		<u> </u>	_	_	Connect it to GND.
29	DC2FB	_	_	_	_	_	Connect it to GND.
30	PGND2	_				<u> </u>	Connect it to GND.
31	DC2SW	_	_		_	_	Leave this pin open.
32	NC	_	Non connection pin	_	_	_	Leave this pin open.

© 2015-2019

2019-12-10

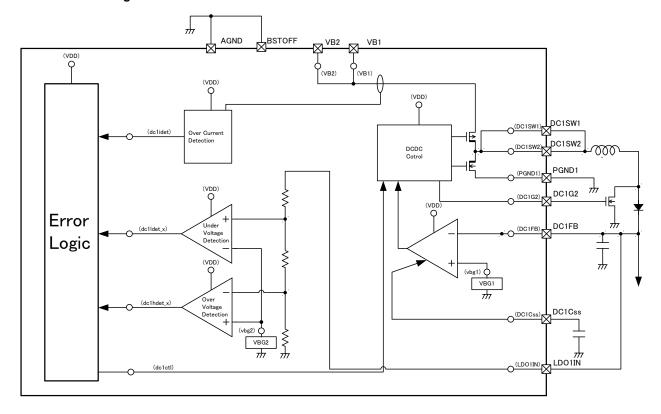
No.	Pin name	I/O	Function	Configuration	Pull-u	ıp/down	Remarks
33	DC2IN	I	DCDC2 input pin	_	_	_	Connect it to GND.
34	AGND2	_	GND	_	<u> </u>	<u> </u>	
35	LDO1	0	Series power supply LDO1 output pin	CMOS			_
36	NC	_	Non connection pin	Non connection pin — — —		_	Leave this pin open.
37	LDO1IN	I	Series power supply LDO1 input pin	_		_	-
38	DC1FB	I	DCDC1 output voltage feed-back detection pin	DMOS	_	_	_
39	DC1G2	0	DCDC1 GATE driver pin	DMOS		_	Leave this pin open if boost mode is not in use.
40	PGND1	_	DCDC1 GND pin	_	_	_	Connect it to GND.
41	DC1SW1	0	DCDC1 switching output pin 1	DMOS	_	_	This pin is to be short-circuited with DC1SW2.
42	DC1SW2	0	DCDC1 switching output pin 2	DMOS	_	_	This pin is to be short-circuited with DC1SW1.
43	VB1	I	Power supply voltage input pin 1	_	_	_	_
44	VB2	I	Power supply voltage input pin 2	<u> </u>	_		-
45	VB3	I	Power supply voltage input pin 3	_			
46	NC	_	Non connection pin — — — —		Leave this pin open.		
47	CAN_IN	I	Wake-up signal from CAN	DMOS	PD	250kΩ	<u> </u>
48	IGN_IN	_	Input pin for wake-up signal from IGN	DMOS	PD	250kΩ	_

4 Pin layout

		1	
1 LDOIO		IGN_IN	48
2 TEST1		CAN_IN	47
3 VDDL		NC	46
4 VDD		VB3	45
5 BSTOFF		VB2	44
6 DC1Css	<u> </u>	VB1	43
7 MCU_IN		DC1SW2	42
8 SDIN		DC1SW1	41
9 SDOUT	W 9	PGND1	40
10 SCLK		DC1G2	39
11 NSCS		DC1FB	38
12 NC	+>	LDO1IN	37
13 TR1	+>	NC	36
14 TR2		LDO1	35
15 TR3		AGND2	34
16 AGND1	–	DC2IN	33
17 NRST1		NC	32
18 OSC	\Box	DC2SW	31
19 NDIAG		PGND2	30
20 TEST2		DC2FB	29
21 CK		DC2FBs	28
22 TC		DC2Css	27
23 TEST3		TEST4	26
24 WS		NRST2	25

© 2015-2019

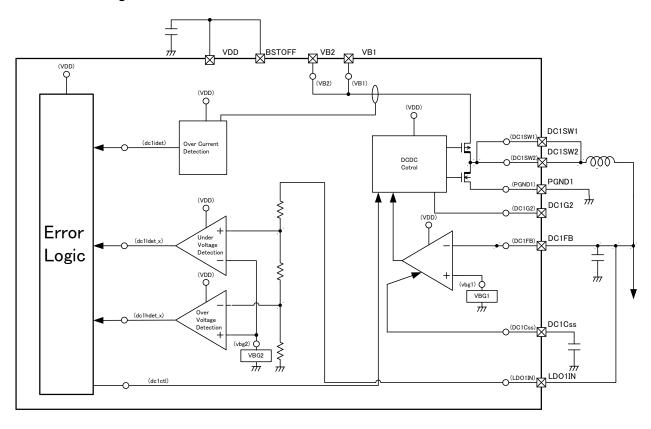
5 Functional description


Some of the functional blocks of the block diagram of this chapter, the circuit or constant labels, might have been omitted or simplified for clarity.

5-1.DCDC Convertor DCDC1

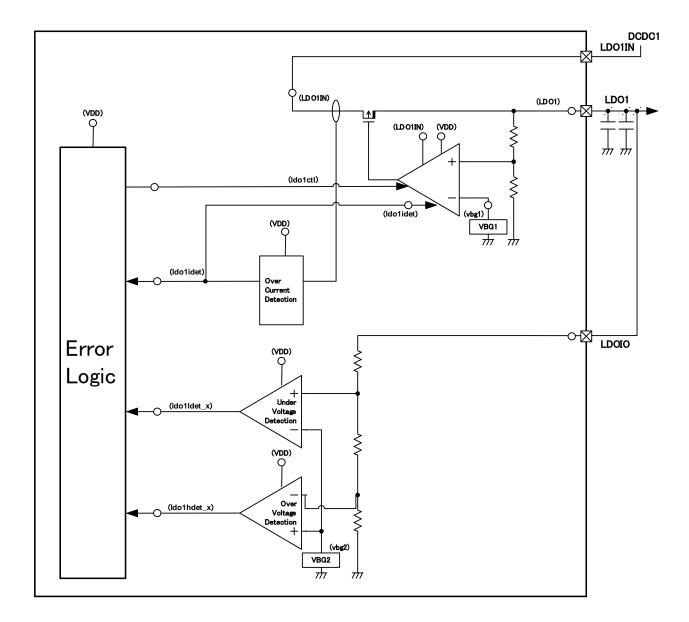
It is buck-boost DCDC convertor with input voltage VB1/2 and 6V output voltage. For buck mode, it is a synchronous rectifying type incorporating output driver MOS and rectification MOS. For boost mode, it is a diode rectifying type having external driver MOS and rectifier diode.

- ♦ Switching frequency is 400 kHz (typ.).
- It incorporates functions of overcurrent detection and high/low voltage detection (not used in low voltage detection).
- ♦ It incorporates phase compensating capacitor.
- ♦ The capacitor connected to DC1Css pin can control voltage rising time.
- ♦ Buck mode enables use of DCDC convertor for buck mode (with BSTOFF = VDD set). Switching between buck-boost mode and buck mode during IC operation must not be performed.


At the time of using DCDC convertor for buck-boost mode

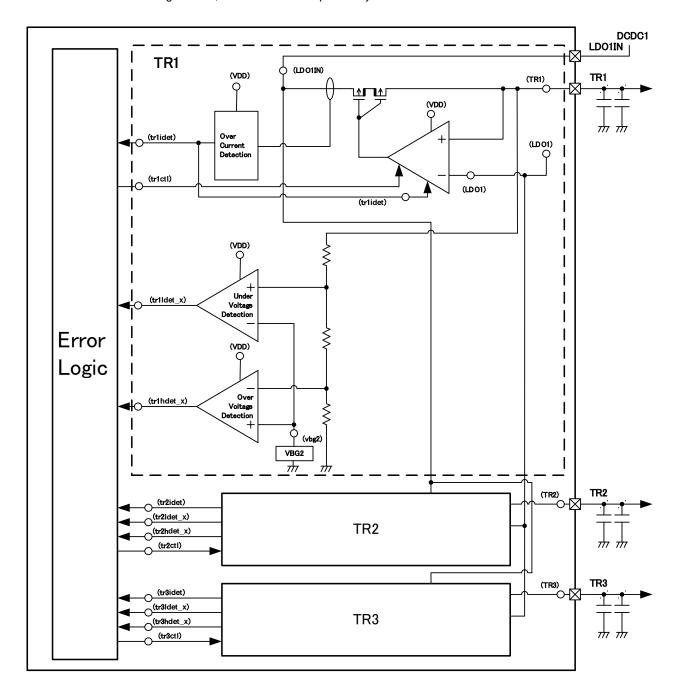
© 2015-2019 2019-12-10

At the time of using DCDC convertor for buck mode



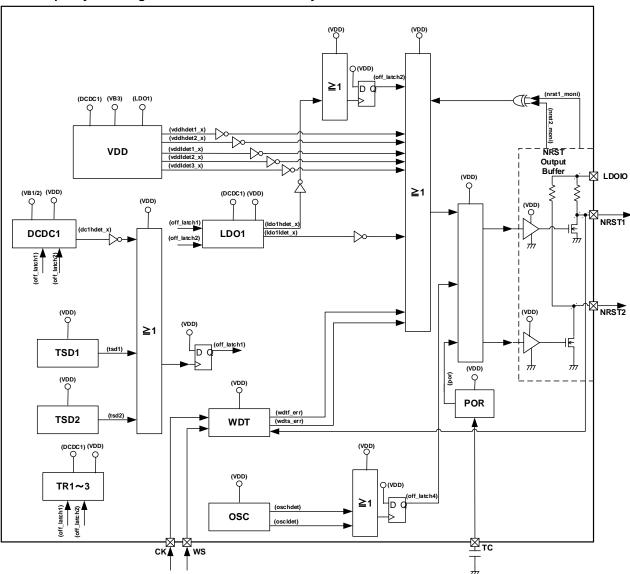
5-2. Series Power Supply

LDO₁


- It is a series power supply incorporating output driver MOS.
- ➢ 6V output from DCDC1 convertor must be used as input voltage.
- > Output voltage is 5V±0.1V, and output current 400mA (max).
- It incorporates functions of overcurrent detection and high/low voltage detection. (Set current consumption considering allowable dissipation and heat generation.)
- It incorporates phase compensating capacitor.

TR1, TR2, TR3

- It is a tracker power supply incorporating output driver MOS.
- Output voltage is linked with LDO1.
- > Output current of TR1, TR2 or TR3 is 100mA (max).
- It incorporates functions of overcurrent detection (100mA (min) for TR1, TR2 and TR3 respectively) and high/low voltage detection (TR1, TR2, and TR3). (Set current consumption considering allowable dissipation and heat generation.)
- It enables turning off TR1, TR2 and TR3 independently via SPI communication.



5-3. Abnormality Detection Function

It incorporates abnormality detection function as follows.

Reset output system diagram at the time of abnormality detection

Power supply operational matrix (Initial value as register setting)

- * Relaunch of power supply input VB1,VB2 and VB3 or relaunch by IGN_IN/CAN_IN/MCU_IN control is required to release off-latch (mode).
- * "During start-up" is defined as the period until low voltage detection of each power supply is released, and "after start-up (in operation)" as the subsequent period.
- * During off-latch (mode) or turning off, output voltage is discharged with a discharge resistor and turned off.
- * If restart is requested during discharging, start-up operation is executed even with discharging.

■ During operation (Initial value as register setting)

Abnormality detection	Power supply	VDD	DCDC1	LDO1	TR1 to 3	NRST1/2	NDIAG
	DCDC1	Operation continued	Overcurrent detection off-	Operation continued* 1	Operation continued * 1	L*4	L Latch
Overcurrent detection	LDO1	Operation continued	Operation continued	Overcurrent limitation Operation continued (voltage drop)	Operation continued* 2	L* 4	L Latch
	TR1 to 3	Operation continued	Operation continued	Operation continued	Overcurrent limitation Operation continued * 3	-	L Latch
	VDD	High voltage OFF	OFF	OFF	OFF	L	L ※5
High voltage detection	DCDC1	Operation continued	High voltage off-latch	Off-latch	Off-latch	L*4	L Latch
detection	LDO1	Operation continued	Off-latch	High voltage off-latch	Off-latch	L	L Latch
	TR1 to 3	Operation continued	Operation continued	Operation continued	High voltage Operation continued	_	L Latch
	VB3	Operation continued	OFF	OFF	OFF	L*4	L Latch
	VDD	Low voltage	OFF	OFF	OFF	L	L
Low voltage detection	DCDC1	Operation continued	Low voltage	Operation continued	Operation continued	_	_
	LDO1	Operation continued	Operation continued	Low voltage	Operation continued * 2	L	L Latch
	TR1 to 3	Operation continued	Operation continued	Operation continued	Low voltage	_	L Latch
Overheat detection	_	Operation continued	Off-latch	Off-latch	Off-latch	L* 4	L Latch
Abnormal frequency	_	Operation continued	Off-latch	Off-latch	Off-latch	L	L Latch

^{* 1:} The operation continues, but the output is suspended because of DCDC1 off-latch (mode).

© 2015-2019 2019-12-10

^{* 2:} The operation continues, but voltage drops following LDO1 behavior.

^{* 3:} The operation continues, but output voltage drops in conjunction with current value.

^{* 4:} It becomes L if LDO1 detects low voltage.

^{* 5:} During operation If VDD high voltage is detected, low voltage detection is also accompanied by OFF operation, so it may look like a L latch.

■ During start-up (Initial value as register setting)

Abnormality detection	Power supply	VDD	DCDC1	LDO1	TR1 to 3	NRST1/2	NDIAG
	DCDC1	Normal start- up	overcurrent detection off-latch	Start-up failure	Start-up failure	L* 1	L Latch
	LDO4	Normal start- up	Normal start- up	Overcurrent limitation Normal start- up	Normal start- up	_	L Latch
Overcurrent detection	LDO1	Normal start- up	Normal start- up	Overcurrent limitation Start-up failure	Start-up failure	L* 1	L Latch
	TD4 40 2	Normal start- up	Normal start- up	Normal start- up	Overcurrent limitation Normal start- up	_	L Latch
	TR1 to 3	Normal start- up	Normal start- up	Normal start- up	Overcurrent limitation Start-up failure	_	L Latch
	VDD	High voltage off	Start-up failure	Start-up failure	Start-up failure	L	L
	DCDC1	Normal start- up	High voltage off- latch	Start-up failure	Start-up failure	L* 1	L Latch
High voltage detection	LDO1	Normal start- up	Off-latch	High voltage off- latch	Off-latch	L	L Latch
	TR1 to 3	Normal start- up	Normal start- up	Normal start- up	High voltage Normal start- up	_	L Latch
	VB3	Normal start- up	Start-up failure	Start-up failure	Start-up failure	L* 1	L Latch
	VDD	Low voltage	Start-up failure	Start-up failure	Start-up failure	L	L Latch
Low voltage detection	DCDC1	Normal start- up	Low voltage	Start-up failure	Start-up failure	_	_
	LDO1	Normal start- up	Normal start- up	Low voltage	Low voltage	L	L Latch
	TR1 to 3	Normal start- up	Normal start- up	Normal start- up	Low voltage	_	L Latch
Overheat detection	_	Normal start- up	Start-up failure	Start-up failure	Start-up failure	L * 1	L Latch
Abnormal frequency	_	Normal start- up	Start-up failure	Start-up failure	Start-up failure	L	L Latch

^{* 1:} It becomes L if LDO1 detects low voltage.

Voltage abnormality detection function of power supply output

It incorporates high voltage detection function for the output of DCDC1, LDO1, TR1 to 3 and VDD, and low voltage detection function for the output of VB3, LDO1, TR1 to 3 and VDD. Each detection result is input to error logic, which outputs NDIAG if any high voltage or low voltage is detected. NDIAG becomes H in normal status, while NDIAG becomes L latch at high voltage or low voltage detection.

If LDO1 or VDD detects low voltage, reset is output from NRST1 and NRST2 (NRST1 = NRST2 = L).

If VDD high voltage is detected, VDD, DCDC1, LDO1 and TR1 to 3 are turned off with reset outputting from NRST1 and NRST2 (NRST1 = NRST2 = L).

If DCDC1 detects high voltage, DCDC1, LDO1 and TR1 to 3 are latched off.

If LDO1 detects high voltage, DCDC1, LDO1 and TR1 to 3 are latched off with reset outputting from NRST1 and NRST2 (NRST1 = NRST2 = L).

List of operation at high voltage detection

Monitoring function	SPI setting	Setting bit	Operation	Initial value	ABIST	Writing to register	NRST 1/2	NDIAG
	Applicable	0	NDIAG output only	_	0	0	_	L Latch
DCDC1		1	NDIAG output DCDC1, LDO1 and TR1 to 3 off-latch	0	0	0	_	L Latch
		0	NDIAG output only		0	0	_	L Latch
LDO1	Applicable	1	NDIAG and NRST1/2 output, DCDC1, LDO1 and TR1 to 3 off-latch	0	0	0	L	L Latch
TR1	Applicable	0	NDIAG output TR1 off-latch	_	0	0	_	L Latch
IKI		1	NDIAG output only	0	0	0	_	L Latch
TR2		0	NDIAG output TR2 off-latch	_	0	0	_	L Latch
I KZ	Applicable	1	NDIAG output only	0	0	0	_	L Latch
TR3	Applicable	0	NDIAG output TR3 off-latch	_	0	0	_	L Latch
IKS	Applicable	1	NDIAG output only	0	0	0	_	L Latch
VDD	Not applicable	_	NDIAG and NRST1/2 output, VDD, DCDC1, LDO1 and TR1 to 3 turned off				L	L

List of operation at low voltage detection

Monitoring function	SPI setting	Setting bit	Operation	Initial value	ABIST	Writing to register	NRST 1/2	NDIAG
VB3	Not applicable	_	NDIAG output DCDC1,LDO1 and TR1 to 3 turned off	_	0	0	_	L Latch
LDO1	Not applicable	_	NDIAG and NRST1/2 output turned off		0	0	L	L Latch
TR1	Not applicable	_	DIAG output only		0	0		L Latch
TR2	Not applicable	_	DIAG output only		0	0	_	L Latch
TR3	Not applicable	_	DIAG output only	_	0	0	_	L Latch
VDD	Not applicable	_	NDIAG and NRST1/2 output, DCDC1, LDO1 and TR1 to 3 turned off			_	L	L

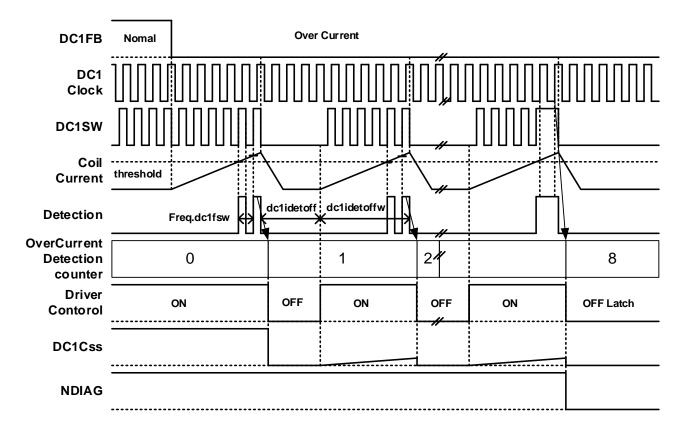
© 2015-2019 2019-12-10

Overcurrent abnormality detection operation

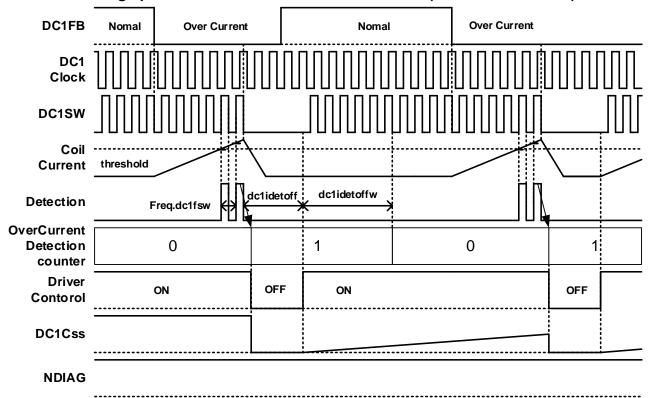
Overcurrent detection function is incorporated for the output of DCDC1, LDO1, TR1, TR2 and TR3. Each detection result is input to error logic, which outputs NDIAG if any overcurrent is detected. NDIAG becomes "H" in normal status, and NDIAG becomes "L latch" at overcurrent detection.

DCDC1 overcurrent operation

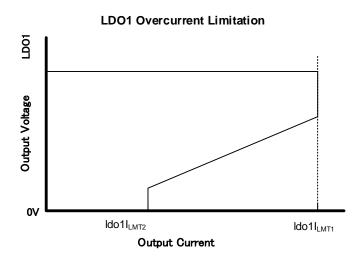
DCDC1 detection & control method

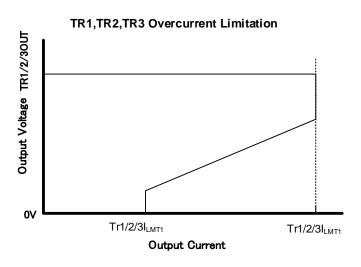

When overcurrent is detected for two pulse times at sampling frequency dc1fsw, output driver control is turned OFF. Even if this mode is repeated Ndc1idetoff (=8) times, if it is in the overcurrent state, DCDC1 power supply function is OFF Latch., it is to output information on abnormality detected to error logic and set NDIAG to L latch. At overcurrent detection, it is to output information on abnormality detected to error logic and set NDIAG to L latch.

After the Tdc1idetoff(typ.2ms) turn-off mode, overcurrent detection counter is reset if overcurrent is not detected in Tdc1idetoffw(maximum 2ms).


For details, refer to the following table and timing chart.

ON/OFF switching operation at DCDC1 overcurrent detection (off-latch)


ON/OFF switching operation at DCDC1 overcurrent detection (with detection reset)


LDO1 overcurrent operation

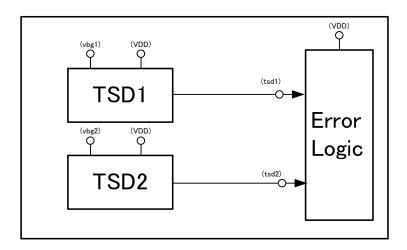
LDO1 incorporates a current limiter. The current limiter starts operating at overcurrent detection, and outputs a signal of limiter operation, information on abnormality detected, to error logic and set NDIAG to L latch. For details, refer to the table below.

TR1, TR2, TR3 overcurrent operation

TR1, TR2, TR3 incorporate a current limiter. The current limiter starts operating at overcurrent detection, and outputs a signal of limiter operation, information on abnormality detected, to error logic and set NDIAG to L latch. For details, refer to the table below.

List of operation of overcurrent detection values

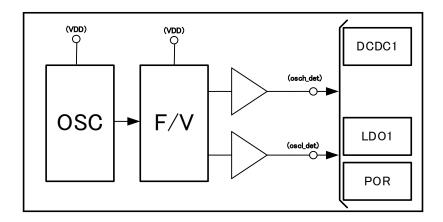
Monitoring function	SPI setting	Setting bit	Operation	Initial value	ABIST	Writing to register	NDIAG
		0	DCDC1 operation continued	-	0	0	L latch
DCDC1 overcurrent	Applicable	1	DCDC1 off-latch (8 times)	0	0	0	L latch
LDO1 overcurrent	Not applicable	_	LDO1 current limiter	-	0	0	L latch
TR1 overcurrent	Not applicable	_	TR1 current limiter	-	0	0	L latch
TR2 overcurrent	Not applicable	_	TR2 current limiter	-	0	0	L latch
TR3 overcurrent	Not applicable	_	TR3 current limiter	-	0	0	L latch


^{*} Only at the time of starting until NRST1 is released(NRST1=H), TR1/2/3 overcurrent detection function does not start operation to write in register and NDIAG does not become L latch.

2019-12-10

Overheat detection

This product incorporates an overheat detection function. It stops after latching off power supply circuits of DCDC1, LDO1 and TR1 to 3, if junction temperature Tj exceeds overheat detection temperature TSD1 or TSD2 = 170 °C (typ.) (Only at the time of overheat detection, processing to turn off DCDC1, LDO1 and TR1 to 3 is selectable by SPI setting.)



List of operation of overheat detection values

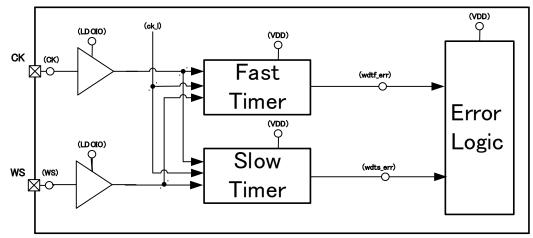
Monitoring function	SPI setting	Setting bit	Operation	Initial value	ABIST	Writing to register	NDIAG
Overheat detection	Applicable	0	DCDC1,LDO1 and TR1 to 3 turned off	_	0	0	L latch
		1	DCDC1, LDO1 and TR1 to 3 off-	0	0	0	L latch
			latch				

Oscillation frequency monitoring

- > F/V convertor and voltage comparator are to detect abnormality in high frequency and low frequency.
- ➤ If abnormal frequency is detected, it latches off DCDC1, LDO1 and TR1 to 3 simultaneously with NRST1/2 = L and NDIAG = L latch.

5-4. Watchdog Timer Watchdog timer

- ▶ It is a window type to detect both low speed and high speed abnormalities of watchdog clear pulse (CK input). If either of them is detected (*1), reset signals of NRST1 and NRST2 = L, and NDIAG = L are output.
- Validity/invalidity of high speed abnormality detection is selectable via SPI communication.
- Validity/invalidity of watchdog timer is selectable by WS pin setting. (In the case of invalidity selected, NRST2 becomes L.)
- Whether or not to latch NRST1 and NRST2 = L at watchdog error detection is selectable by register setting.
- The number of times that NRST1 and NRST2 become L outputs due to the watchdog timer is counted. When this count reaches five times, NRST1 and NRST2 become L latches. However, when a clear pulse is input during counting, the count is cleared at that point.
- *1 High speed abnormality detection is to be counted on a high speed detection counter. If the detection is counted 10 consecutive times with no normal input of clear pulse, reset signals of NRST1 and NRST2 = L, and NDIAG = L are output.


	Condition for counting	Condition for WDT reset output	Condition for initializing counter value	Remarks
Watchdog timer Counter	At valid WDT function	Low speed abnormality detection	Normal input of clear pulse or reset output or watchdog timer low speed abnormality detection or watchdog timer high speed abnormality detection or WS pin = H or at invalid WDT function	_
Watchdog timer high speed detection counter	igh speed detection & WDT high speed abnormality detection abnormality detection 10 consecutive times of WS pin =H or at		Reset output or normal input of clear pulse or WS pin =H or at invalid WDT function	
watchdog timer detection attributable to Counter value = 5. (Paset output latch is pulse or V		Normal input of clear pulse or WS pin = H or at invalid WDT function	Stopping counting at watchdog timer reset counter = 5	
CK counter	At valid WDT function (only the first time after the validation)	typ. 256 ms count	Normal input of clear pulse or WS pin = H	_

^{*} Valid WDT monitoring function: when clear pulse is input within start-up waiting time Invalid WDT monitoring function: after Power-on reset (including recovery from low voltage) In the case of WS pin = H

© 2015-2019 2019-12-10

Watchdog timer function block

Watchdog timer start-up waiting time

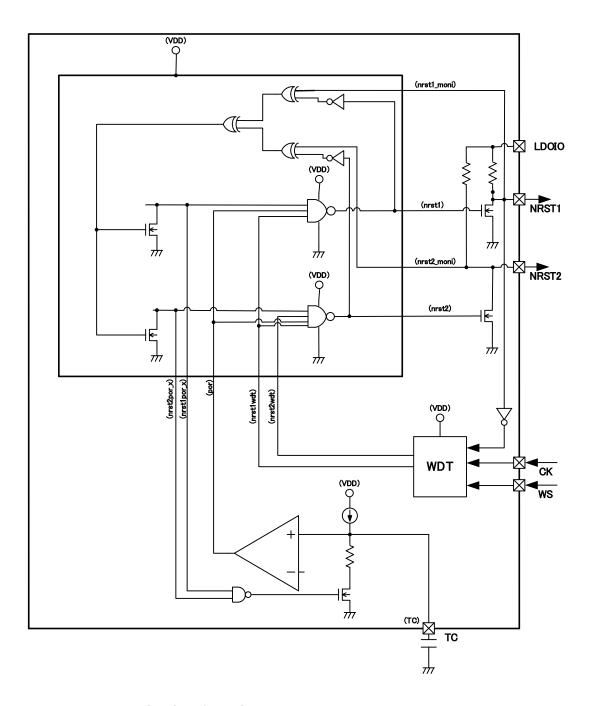
WDT monitoring It will be started, when the clear pulse is input from the MCU within the watchdog timer start wait time (typ. 256 ms) from the time when the power on reset is released with this WS pin set to "L". However, if reset occurs 5 consecutive times with no input of clear pulse from MCU, it latches off.

If watchdog timer function is set invalid by WS pin setting, the start-up waiting time also becomes invalid.

- In the case of no clear pulse detected because of broken MCU during the start-up ⇒ reset
- At startup, if the MCU is broken and the low width (twl) of the clear pulse is short. ⇒ high speed detection after WDT monitoring has become valid ⇒ reset

Condition for NRST2 release

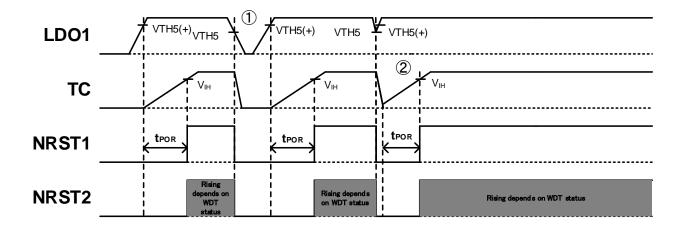
A MCU judges the operation normal and releases NRST2 if WDT clear signal is input within normal time (to be set in register) after WDT monitoring starts at clear pulse input within the start-up waiting time.


If watchdog timer function is set invalid by WS pin setting, NRST2 becomes L.

5-5.Power-on Reset Function

Power-on reset

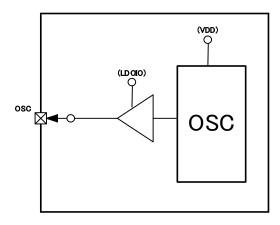
- LDO1 output voltage shows normal values (with low voltage detection released), Power-on reset timer function starts operating. After Power-on reset time, NRST1 becomes H and the reset is released.
- > Power-on reset time is changeable with capacitance of external capacitor (TC).


Reset output monitoring function

Reset output is constantly monitored. The output of NRST1 and NRST2 error logic is to be compared to the pin logic. If the latter differs from the former, reset output monitoring abnormality is detected with NRST1=NRST2=off, NDIAG=L latch.

© 2015-2019 2019-12-10

Reset timer timing chart



- ① NRST1/2 becomes L at LDO1 drop detection. NRST1 becomes H (NRST2 depending on WDT status) after Power-on reset time with LDO1 drop detection released.
- ② In the case of NRST1 = L, NRST1 becomes H after tPOR time even if LDO1 recovers instantly.

5-6. Clock Generation Function

Oscillator circuit

- It is a C/R oscillator with built-in capacitor and resistor. Oscillation frequency is 8 MHz (typ.)
- It is used for DCDC convertor switching, and logic circuit clock.
- > The setting by SPI communication allows outputting divided clock from OSC pin.
- > It incorporates a detection circuit to output DIAG signal at the event of abnormal oscillation frequency.
- It incorporates a spread spectrum function. Whether to validate the function is selectable via SPI communication.

5-7.SPI Communication

SPI communication circuit consists of SPI core circuit and register read circuit block.

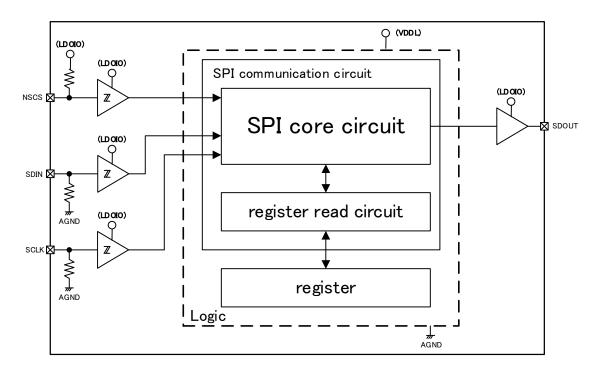
NSCS becomes "L" only during communication, otherwise it is always "H".

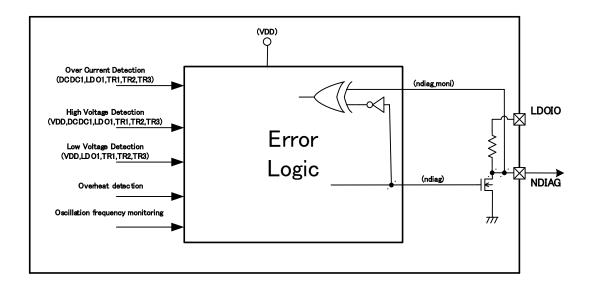
SCLK is used to synchronize communication between IC and MCU. The MCU writes data in SDIN at rising edge of clock, and IC reads it at the next falling edge. IC writes data in SDOUT at rising edge of clock, and the MCU reads it at the next falling edge.

SDIN receives the data bit from the MCU in the order of MSB to LSB.

SDOUT sends the data bit to the MCU in the order of MSB to LSB. The output is in push-pull configuration, and will be high-impedance at the time of NSCS = "H".

The IC has NSCS pin with built-in pull-up resistor, and SCLK and SDIN pins with built-in pull-down resistors.

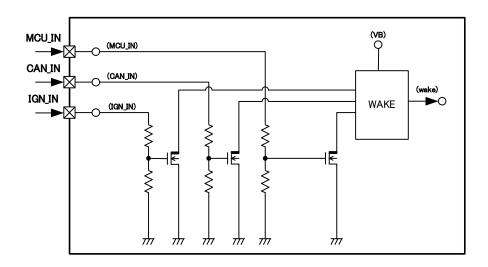



Fig. 5.8.a Block diagram for SPI communication circuit

5-8.Error Logic

Error logic function

- If power IC monitoring results are not acceptable, NDIAG = L latch is output. The abnormality data is written simultaneously in the register incorporated in SPI.
- The output of NDAIG error logic is to be compared to the pin logic constantly. If the latter differs from the former, NDAIG output monitoring abnormality is detected with NDAIG=L latch.
- If all the detected abnormalities become normal and abnormality data written in the register is cleared, the status returns to NDIAG = H.


Error logic circuit block diagram

5-9. Wake-up Function

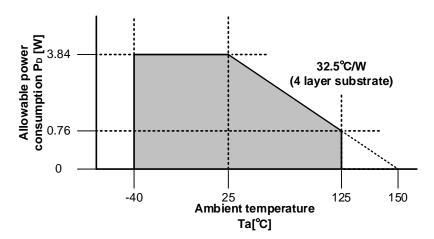
Wake-up circuit

> This IC is waked up by inputting one of three inputs(CAN_IN or IGN_IN or MCU_IN). The following shows the configuration.

Operation truth table

	Input	Output		
CAN_IN	IGN_IN	wake		
"L"	"L"	"L"	" <u>L</u> "	
"H"	" *"	(i*))	"H"	
"*"	"H"	(i±1)	"H"	
643 7	(f *1)	"H"	"H"	

※ "*": No Care



6 Absolute maximum ratings (Ta = 25 °C)

Item	Signal	Pin	Rating	Unit	Condition
			-0.3 to 18		_
	V _B	VB1,VB2,VB3	18 to 28(≤1h)	V	_
Power voltage			28 to 40(≤1s)		_
vollago	V _{LDO1}	LDO1	-0.3 to 6	V	_
	V _{DD}	VDD	-0.3 to 6	V	_
			-0.3 to 18		_
	V _{IN1}	IGN_IN,CAN_IN,	18 to 28(≤1h)	V	_
			28 to 40(≤1s)		_
	V _{IN2}	MCU_IN	-0.3 to 6	V	_
Input voltage	V _{IN3}	DC1FB,DC2IN, LDO1IN	-0.3 to V _B +0.3	٧	V _{IN2} ≤18 V _{IN2} ≤28(≤1h)
voitage	V _{IN4}	LDOIO	-0.3 to V _{LDO1IN} +0.3	V	V _{IN4} ≤6V
	V _{IN5}	TC,WS SDIN,SCLK,NSCS,CK	-0.3 to V _{LDOIO} +0.3	٧	V _{IN5} ≤6V
	V _{IN6}	BSTOFF,DC1Css, DC2Css,TEST1,TEST2,TEST3,TEST4,VDDL, DC2FB,DC2FBs	-0.3 to V _{DD} +0.3	V	V _{IN6} ≤6V
	V _{OUT1}	DC1SW1, DC1SW2	-0.3 to V _B +0.3	V	V _{out2} ≤18 V _{out2} ≤28(≤1h) V _{out2} ≤28 to 40(1s)
Output	V _{OUT2}	DC1G2, DC2SW	-0.3 to V _B +0.3	٧	V _{out2} ≤18 V _{out2} ≤28(≤1h)
voltage	V _{OUT3}	NRST1,NRST2, NDIAG, SDOUT, OSC	-0.3 to V _{LDO1} +0.3	V	V _{OUT3} ≤6V
	V _{OUT4}	TR1, TR2, TR3	-2 to V _B +0.3	V	V _{out4} ≤18 V _{out4} ≤28(≤1h)
	I _{OUT1}	DC1SW1, DC1SW2	dc1I _{DET}		_
Output	I _{OUT2}	DC2SW	_		_
Output current	I _{OUT3}	LDO1	Ido1I _{LMT1}	Α	_
	I _{OUT4}	TR1,TR2,TR3,	tr1I _{LMT1} / tr2I _{LMT1} / tr3I _{LMT1}		_
Allowable dissipation	P _D	_	Refer to Fig.6-1.	W	_
Operating temperature	Topr	_	-40 to 125	°C	_
Storage temperature	Tstg		-55 to 150	°C	_

Note: Absolute maximum ratings are a set of ratings that must not be exceeded, for even a moment. Exceeding the absolute maximum ratings may cause IC breakdown, deterioration and/or damage, and consequently may damage other equipment than IC. Please keep the specified absolute maximum ratings unfailingly in any operating conditions for designing, and use the product within the specified operating ranges.

Substrate size 76.2×114.3×1.6 mm Soldering on substrate board: applicable Fig.6.1 Allowable dissipation

7 Electrical characteristics

(Unless otherwise specified, VB1/VB2/VB3 = 2.7 to 28V in buck-boost mode/6V to 28V in buck mode (over 5.6V in buck-boost mode/over 6V in buck mode during start-up), Ta = -40 to 125 °C)

ltem	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit			
Overall characteristics										
Stand-by current	Icc- _{STB}	VB1,VB2,VB3	I _{VB1} +I _{VB2} +I _{VB3} IGN_IN=CAN_IN=MCU_IN= 0V,VB1/2/3=12V,Ta=25°C	_	_	5	μA			
Current consumption 1	lcc1	VB1,VB2,VB3	VB1/2/3=12V, I _{LD01} =300mA, I _{TR1} =100mA,I _{TR2} =I _{TR3} =40mA,	_	-	350	mA			
Current consumption 2	Icc2	VB1,VB2,VB3	VB1/2/3=18V, I _{LDO1} =300mA, I _{TR1} =100mA,I _{TR2} =I _{TR3} =40mA,	-	-	240	mA			
Current consumption 3	Icc3	VB1,VB2,VB3	VB1/2/3=18V I _{LD01} =50mA I _{TR1} =I _{TR2} =I _{TR3} =20mA	_	1	90	mA			
Current consumption 4	Icc4	VB1,VB2,VB3	I _{LDO1} =0mA I _{TR1} =I _{TR2} =I _{TR3} =0mA, I _{DCDC2} =0mA	_	_	26	mA			

ltem	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit	
DCDC1 power supply		•		•				
			VB pin voltage 7.0V to:10 to 800mA	5.7	6.0	6.3		
			VB pin voltage 6.2 to 7.0V: 10 to 500mA	5.7	_	7.0		
Output voltage	Vac	V_{DC1}		VB pin voltage 4.0V to 6.2V: 10 to 500mA 2.7V to 4.0V: 10 to 400mA	5.7	6.0	6.3	V
		DC1FB	VB pin Voltage(Back mode) 7.0V to:10 to 800mA	5.7	6.0	6.3		
			VB pin Voltage(Back mode) 6.8V to 7V:10 to 800mA 6.0 to 6.8V:10 to 500mA	5.7		7.0		
			VB3 pin voltage 7.0V to	800	_	_		
			VB3 pin voltage 4.0V to 7.0V VB3 pin voltage 2.7V to 4.0V	500 400	_	_	mA	
Output current	ldc1		VB3 pin Voltage (Back mode) 6.8V to	800				
			VB3 pin Voltage (Back mode) 6.0V to 6.8V	500	_	_		
Switching frequency	dc1f _{SW}	_	_	340	400	460	kHz	
Soft start time	dc1t _{ss}	_	Refer to Fig.7.1. V_{DC1} : Time from $0\rightarrow5.5V$ DC1Css=0.01 μ F *	0.8	1.6	2.4	ms	
Overcurrent detection current	dc1I _{DET}	_	_	1.5	2.15	2.8	Α	
Overcurrent detection off time	Tdc1 _{idetoff}	_	_	_	2	_	ms	
Overcurrent detection off waiting time	Tdc1 _{idetoffw}	_	_	_	2	_	ms	
Number of times of overcurrent detected	Ndc1 _{idetoff}	_	_	_	8	_	times	
H output voltage of	do1\/		lout=-20mA	V _{DC1} -0.5	_	V _{DC1}	V	
gate driver for boost mode	dc1V _{GH}	DC1G2	lout=-20mA (DCDC1 start & V _{DC1} <5.3V)	3.1	_	V _{DC1}	V	
L output voltage of gate driver for boost mode	dc1V _{GL}		lout=20mA	_	_	0.5	V	
	LDO1 power supply							
Output voltage	V _{LDO1}	LDO1	I _{LOAD1} =1 to 400mA	4.9	5.0	5.1	V	
Load stability	V_{LOAD}	LDO1	VLDO1IN=6V I _{LOAD1} =1 to 400mA	-1	0.2	1	%	
Current limiter 1	$Ido1I_{LMT1}$	LDO1	_	400	_	800	mA	
Current limiter 2	$Ido1I_{LMT2}$	LDO1	LDO1=0V	_	_	100	mA	
Output discharge resistance	R _{ldo1dis}	LDO1	_	60	130	220	Ω	

^{*} The standard value for soft start time is specified for Ics. Please note that fluctuations of capacitance of DC1Css pin's external capacitor are not considered.

© 2015-2019 2019-12-10

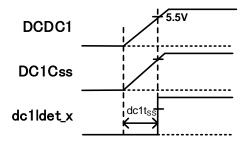


Fig.7.1 Soft start time for DCDC1

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
TR1 power supply	1	·	•	•			
Voltage difference	V _{TR1-LD01}	TR1 LDO1	I _{LDO1LOAD} =1 to 400mA I _{TR1LOAD} =1 to 100mA	-20	0	20	mV
Current limiter 1	tr1I _{LMT1}	TR1	_	100	_	300	mA
Current limiter 2	tr1I _{LMT2}	TR1	TR1=0V		_	26	mA
Output pull-down resistor	tr1 _{RPD}	TR1	_	5	10	20	kΩ
TR2 power supply							
Voltage difference	V _{TR2-LDO1}	TR2 LDO1	I _{LDO1LOAD} =1 to 400mA I _{TR2LOAD} =1 to 100mA	-20	0	20	mV
Current limiter 1	tr2I _{LMT1}	TR2	_	100	_	300	mA
Current limiter 2	tr2I _{LMT2}	TR2	TR2=0V	_	_	26	mA
Output pull-down resistor	tr2 _{RPD}	TR2	_	5	10	20	kΩ
TR3 power supply	•			•	•		
Voltage difference	V _{TR3-LDO1}	TR3 LDO1	I _{LDO1LOAD} =1 to 400mA I _{TR3LOAD} =1 to 100mA	-20	0	20	mV
Current limiter 1	tr3I _{LMT1}	TR3	_	100	_	300	mA
Current limiter 2	tr3I _{LMT2}	TR3	TR3=0V	_	_	26	mA
Output pull-down resistor	tr3 _{RPD}	TR3	_	5	10	20	kΩ
VDD power supply							
Output voltage	V_{VDD}	VDD		4.5	5.0	5.5	V
Start-up VB3 voltage	Vstvb3	VDD/VB3	_	_	_	5.3	V
LDOIO							
LDOIO current	I _{LDOIO}	LDOIO	LDOIO connects LDO1	_	_	7.2	mA

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
Power-on reset	<u>.</u>	<u>I</u>		L			
Output voltage	V _{OL}		I _{OL} =2mA	_	_	0.3	V
Output leak current	I _{LEAK}	NRST1/2	V _{OUT} =LDOIO	_	_	5	μΑ
Pull-up resistor	R _{RST}		_	3.3	4.7	6.1	kΩ
Power-on reset	t _{POR}	NRST1	Refer to Fig.7.2.	320×C⊤	400×C⊤	480×C⊤	ms
L retaining voltage	V_{RL}		Refer to Fig.7.3	_	_	1.2	V
NRST 1/2 terminal			Time until NRST1/2 detects	4	8	16	μs
abnormality detection	tfVTHNR 1/2		logic abnormality after H / L				
filter time	1/2		output				
NRST 1/2 terminal				_	2.3	2.5	V
abnormality	VhTHNR	NRST1/2	Detection threshold after				
detection threshold High side	1/2		tfVTHNR1/2 at H output				
NRST 1/2 terminal				1.5	1.8	_	V
abnormality	\ (T) N D ((c)		Detection threshold after				
detection threshold	VTHNR1/2		tfVTHNR1/2 at Low output				
Low side							
Input current	I _{IN}		_	-13	-10	-7	μΑ
Discharge resistance	R _{DIS}	TC	_	0.5	1	2	kΩ
Threshold voltage	V_{IH}		_	3.75	4	4.25	V
Watchdog timer			() () () () () () () () () () () () () (
Watchdog – S	t _{WD-S}		(Watchdog timer time on low speed side) Register is set to	5.0	6.0	7.5	ms
vvaloridog 0	two-s		initial value.	0.0	0.0	7.0	1113
			(Maximum pre-configurable				
Watchdog – S max	two-smax		time for watchdog timer on	40.0	48.0	60.0	ms
			low speed side)				
			(Minimum pre-configurable	5 0	0.0		
Watchdog – S min	t _{WD-Smin}		time for watchdog timer on	5.0	6.0	7.5	ms
			low speed side) (Watchdog timer time on high				
Watchdog – F	t _{WD-F}		speed side). Register is set	0.41	0.50	0.63	ms
3			to initial value.				
		CK	(Maximum pre-configurable				
Watchdog – F max	two-Fmax	CK	time for watchdog timer on	3.3	4.0	5.0	ms
			high speed side)				
			(Minimum pre-configurable	0.44	0.50	0.00	
Watchdog – F min	t _{WD-Fmin}		time for watchdog timer on high speed side)	0.41	0.50	0.63	ms
Watchdog			riigii spocu side)				
reset pulse width	t _{wdr}		_	111	160	226	μs
Watchdog clock	t.		Input detectable H width	1	_		110
pulse High width	t _{Wh}		input detectable in width	'			μs
Watchdog clock	twi		Input detectable L width	1	_	_	μs
pulse Low width							۳5
Watchdog timer	_		Length of time between	213	256	320	
waiting time for initial start-up	t _{wdst}		Power-on reset and initial watchdog clear pulse input	213	200	320	ms
	Іін	CK,	V _{IN} =V _{LD01}	50	100	200	
Input current	I _{IL}	WS	V _{IN} =0V	-5	_	5	μA
	V _{IH}	CK,	_	0.75×V _{LDO1}	_		
Input voltage	VIL	ws		_		0.25×V _{LDO1}	V

* The standard value for Power-on reset is specified for Ics. Please note that fluctuations of C_T [μF] are not considered. Minimum time at an instantaneous power failure is 264 x C_T [ms].

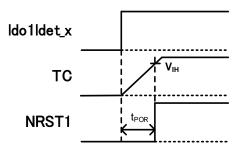
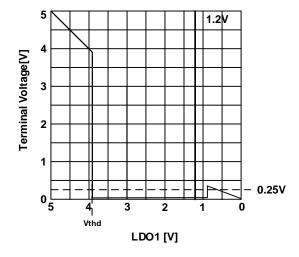



Fig.7.2 Power-on reset

%The L retaining voltage by VDD is a design guarantee.

Fig.7.3 L retaining voltage

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
Power supply voltage r	nonitoring						
DCDC1 high voltage detection	VhTH6		Detected	8.7	9.0	9.3	
DCDC1 high voltage detection released	VhTH6(-)		Released	8.6	8.9	9.2	V
DCDC1 high voltage detection difference voltage	dVhTH6	DC1FB	VhTH6-VDC1	2.7	3.0	3.3	
DCDC1 high voltage detection filtering time	tfVhTH		_	0.5	1.0	2.0	ms
LDO1 high voltage detection	VhTH5		Detected	5.2	5.3	5.4	
LDO1 high voltage detection released	VhTH5(-)		Released	5.1	5.2	5.3	V
LDO1 high voltage detection difference voltage	dVhTH5		VhTH5-VLDO1	0.2	0.3	0.4	
LDO1 high voltage detection filtering time	tfVhTH	LDO1	_	5	15	30	μs
LDO1 low voltage detection released	VTH5(+)	LDO1	Released	4.7	4.8	4.9	
LDO1 low voltage detection	VTH5		Detected	4.6	4.7	4.8	V
LDO1 low voltage detection difference voltage	dVTH5		VLDO1-VTH5	0.15	0.30	0.45	
LDO1 low voltage detection filtering time	tfVTH		_	5	15	30	μs
VDD low voltage detection	VTHD	VDD	_	3.6	3.7	3.8	V
VDD high voltage detection	VhTHD	טטע		5.55	5.75	5.95	٧

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
Power supply voltage r	nonitoring	•		•	•		•
TR1 high voltage detection	VhTHtr1		Detected	5.2	5.4	5.6	
TR1 high voltage detection released	VhTHtr(-)1		Released	5.1	5.3	5.5	V
TR1 high voltage detection difference voltage	dVhTHtr1		VhTHtr1-Vtr1	0.2	0.4	0.6	
TR1 high voltage detection filtering time	tfVhTH	TR1	_	5	15	30	μs
TR1 low voltage detection released	VTHtr(+)1	IKI	Released	4.5	4.7	4.9	
TR1 low voltage detection	VTHtr1		Detected	4.4	4.6	4.8	V
TR1 low voltage detection difference voltage	dVTHtr1		Vtr1-VTHtr1	0.2	0.4	0.6	
TR1 low voltage detection filtering time	tfVTH		_	5	15	30	μs
TR2 high voltage detection	VhTHtr2		Detected	5.2	5.4	5.6	
TR2 high voltage detection released	VhTHtr(-)2		Released	5.1	5.3	5.5	V
TR2 high voltage detection difference voltage	dVhTHtr2		VhTHtr2-Vtr2	0.2	0.4	0.6	
TR2 high voltage detection filtering time	tfVhTH	TR2	_	5	15	30	μs
TR2 low voltage detection released	VTHtr(+)2	IKZ	Released	4.5	4.7	4.9	
TR2 low voltage detection	VTHtr2		Detected	4.4	4.6	4.8	V
TR2 low voltage detection difference voltage	dVTHtr2		Vtr2-VTHtr2	0.2	0.4	0.6	
TR2 low voltage detection filtering time	tfVTH		_	5	15	30	μs
TR3 high voltage detection released	VhTHtr3		Detected	5.2	5.4	5.6	
TR3 high voltage detection	VhTHtr(-)3		Released	5.1	5.3	5.5	V
TR3 high voltage detection difference voltage	dVhTHtr3		VhTHtr3-Vtr3	0.2	0.4	0.6	
TR3 high voltage detection filtering time	tfVhTH	TDO	_	5	15	30	μs
TR3 low voltage detection released	VTHtr(+)3	TR3	Released	4.5	4.7	4.9	
TR3 low voltage detection	VTHtr3		Detected	4.4	4.6	4.8	V
TR3 low voltage detection difference voltage	dVTHtr3		Vtr3-VTHtr3	0.2	0.4	0.6	
TR3 low voltage detection filtering time	tfVTH		_	5	15	30	μs

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit			
Power supply voltage monitoring										
VB low voltage detection	VTLL	VDO	At buck-boost mode detected	2.3	2.5	2.7	.,			
	VTHvb	VB3	At buck mode detected	5.4	5.6	5.8	V			
VB low voltage detection released	V(T) b b (c)	VDO	At buck-boost mode released	4.4	5.3	5.6	.,			
	VTHvb(+)	VB3	At buck mode released	5.6	5.8	6.0	V			
VB low voltage detection filtering time	tfVTH	VB3	_	5	15	30	μs			

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
Input and output chara	acteristics						
In a set a series at	I _{IH}		Vin=12V	25	50	100	
Input current	I _{IL}		Vin=0V	-5	1	5	μΑ
lanut valta sa	V_{IH}		_	3	-	_	V
Input voltage	V_{IL}		_	_	_	0.9	V
	tfVTHh	IGN_IN	IGN_IN=0⇒under VB (rising) Time before rising to VDD=1.5V	3	_	50	
Filtering time	tfVTHI		IGN_IN= under VB⇒0 (falling) Time before falling to VDD=4.5V	8	I	300	μs
lanut aumant	I _{IH}		Vin=12V	25	50	100	
Input current	I _{IL}		Vin=0V	-5	-	5	μΑ
lancet coltana	V_{IH}		_	3	_	_	V
Input voltage	V_{IL}		_	_	_	0.9	
Filtering time	tfVTHh	CAN_IN	CAN_IN=0⇒under VB (rising) Time before rising to VDD=1.5V	3	l	50	
	tfVTHI		CAN_IN= under VB⇒0 (falling) Time before falling to VDD=4.5V	8	ı	300	μs
Input current	I _{IH}		Vin=5V	25	50	100	
input current	I _{IL}		Vin=0V	-5	_	5	μA
Input voltage	V_{IH}		_	3	_	_	V
Input voltage	V_{IL}	MCU_IN	_	_	_	0.9	
	tfVTHh		MCU_IN=0⇒under LDO1 (rising) Time before rising to VDD=1.5V	3	_	50	
Filtering time	tfVTHI		MCU_IN= under LDO1⇒0 (falling) Time before falling to VDD=4.5V	8	_	300	μs
In rest assessed	I _{IH}		V _{IN} =5V	50	100	200	
Input current	I _{IL}	DOTOFF	V _{IN} =0V	_	_	10	μΑ
	V _{IH}	BSTOFF	_	0.75×V _{LDO1}	_	_	
Input voltage	V _{IL}		_	_	_	0.25×V _{LDO1}	V
Output voltage	V_{OL}		I _{OL} =2mA	_		0.3	V
Output leak current	I _{LEAK}		Vin=V _{LDO1}	_	_	5	μA
Pull-up resistor	R _{diag}		_	3.3	4.7	6.1	kΩ
NDIAG terminal abnormality detection filter time	tfVTHND		Time until NDIAG detects logic abnormality after H / L output	4	8	16	μs
NDIAG terminal abnormality detection threshold High side	VhTHND	NDIAG	Detection threshold after tfVTHND at H output	_	2.3	2.5	V
NDIAG terminal abnormality detection threshold Low side	VTHND		Detection threshold after tfVTHND at Low output	1.5	1.8	_	V
NDIAG L retaining voltage	VRL		Refer to Fig.7.3	_		1.2	٧

© 2015-2019 2019-12-10

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit		
osc									
Oscillation frequency	fosc	_	_	6.8	8	9.2	MHz		
Oscillation frequency	fosc_h	_	_	9.7	_	17.8	MHz		
monitoring	fosc_l	_	_	3.0	_	6.3	MHz		
	V_{OH}	000	I _{OH} =-2mA	0.9×V _{LDO1}	_	_	V		
Output Voltage	V_{OL}	OSC	I _{OL} =2mA	_	_	0.1×V _{LDO1}			
TSD									
0 1 111 "	TSD1,			455	470	400			
Overheat detection	TSD2		_	155	170	190	°C		
Overheat detection	tfTSD1,			_	45	20			
filtering time	tfTSD2		_	5	15	30	μs		

Item	Signal	Pin	Measurement condition	Minimum	Standard	Maximum	Unit
ABIST/LBIST							
Waiting time for evaluation	TGDs1	_	_	_	_	30	μs
Waiting time for start- up	TGDs2	_	_	_	-	50	μs
ABIST evaluation time	TGDsa	_	_	_	-	1.2	ms
LBIST evaluation time	TGDsb	_	_	_	1	3	ms
SPI DC characteristics	3						
	I _{IH}	SDIN, SCLK	$V_{IN}=V_{LDO1}$ $V_{IN}=0V$	50 -5	100	200 5	
Input current	I _{IH}	NSCS	V _{IN} =V _{LDO1}	-5 -200	_	5 -50	μΑ
	I _{IL} V _{IH}	SDIN,	V _{IN} =0V	0.75×V _{LDO1}	-100 —	-50	
Input voltage	VIL	SCLK, NSCS	_	—	_	0.25×V _{LDO1}	V
_	V _{OH}		I _{OH} =-2mA	0.9×V _{LDO1}	_	_	
Output voltage	V _{OL}	SDOUT	I _{OL} =2mA	_		0.1×V _{LDO1}	V
Output leak current	I _{LEAK}		_	-1	_	1	μA
SPI AC characteristics	1			T			
Valid waiting time	Tcsclk	NSCS SCLK	fop = 2MHz (Time from NSCS falling edge to SCLK rising edge)	250	_	_	ns
Invalid waiting time	Tckcs	SCLK NSCS	(Time from the latest SCLK falling edge to NSCS rising edge)	250	_	_	ns
NSCS falling – SDOUT delay time	Tcsdo	NSCS SDOUT	Cload=100pF (Time from NSCS falling edge to SDOUT non-3- state condition)	_	Ι	340	ns
SDOUT – NSCS rising delay time	Tdocs	NSCS SDOUT	Cload=100pF (Time from NSCS rising edge to SDOUT 3-state condition)	_	I	100	ns
SDIN setting time	Tdick	SDIN SCLK	(Time when SDIN is valid before SCLK falling edge)	120	-	_	ns
SDIN holding time	Tckdi	SCLK SDIN	(Time when SDIN is valid after SCLK falling edge)	120	_	_	ns
SDOUT valid time	Tckdo	SCLK SDOUT	Cload=100pF (Time from SCLK rising edge to valid output data)	_	_	100	ns
NSCS invalid time	Tcsh	NSCS	(Invalid time between consecutive NSCSs)	5	_	_	μs
Operation frequency	fop	SCLK	_	_	_	2	MHz

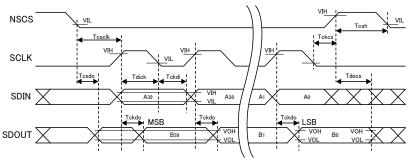
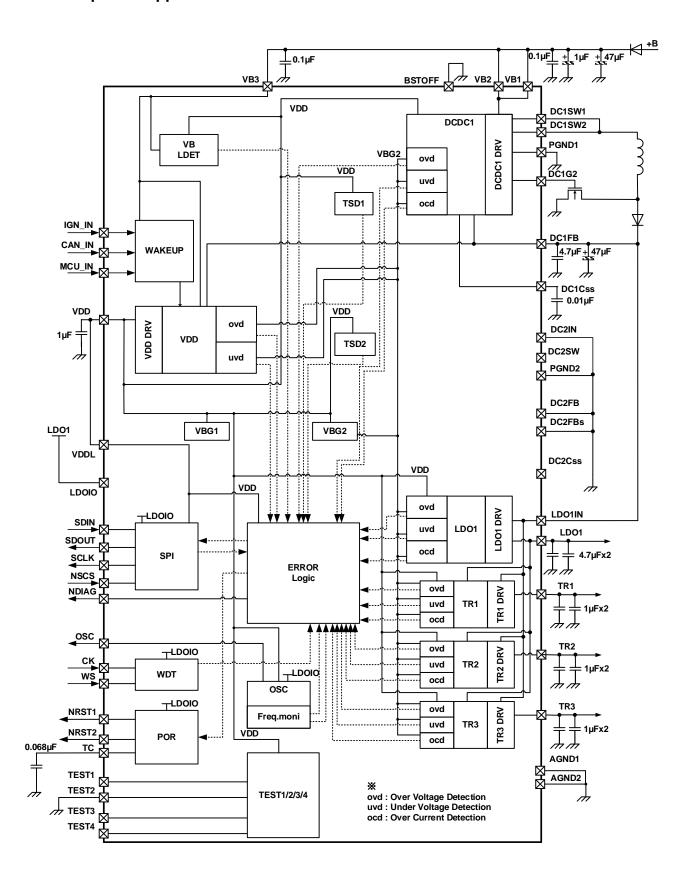
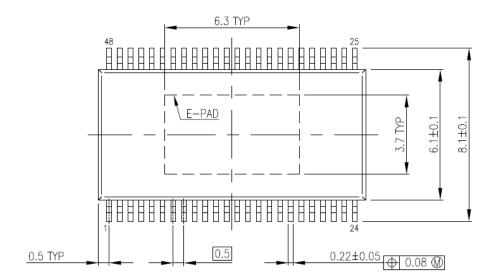
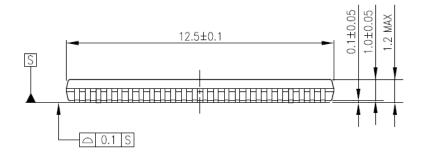
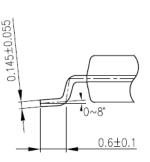



Fig.7.4 SPI Communication electrical characteristic

8 Examples of application circuit




9 Package dimensions


HTSSOP48-P-300-0.50

"Unit: mm"

10 Revision history

Ver	Signal	Large category	Small category	Specification change	Date of revision
1.0	-	-	•	new	2019-02-25
1.1	1.1	Features	<u>-</u>	Added description of AEC-Q100 and functional safety	2019-12-10

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, and lifesaving and / or life supporting
 medical equipment. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For
 details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of
 Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
 substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

© 2015-2019

单击下面可查看定价,库存,交付和生命周期等信息

>>Toshiba(东芝)