

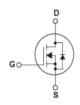
September, 2013 SJ-FET

TSK80R240S1/TSA80R240S1 800V N-Channel MOSFET

Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance. This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion in switching mode operation for higher efficiency.

Features


- Multi-Epi process SJ-FET
- 850V @TJ = 150 °C
- Typ. RDS(on) = 0.22Ω
- Ultra Low Gate Charge (typ. Qg = 27.5nC)100% avalanche tested

TSK80R240S1

Absolute Maximum Ratings

Symbol	Parameter		TSK_A80R240S1	Unit
V _{DSS}	Drain-Source Voltage		800	V
I _D	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)		18.4* 11.6*	А
I _{DM}	Drain Current - Pulsed	(Note 1)	51*	Α
V _{GSS}	Gate-Source voltage		±30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	485	mJ
I _{AR}	Avalanche Current	(Note 1)	3.5	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	1	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	15	V/ns
dVds/dt	Drain Source voltage slope (Vds=640	OV)	50	V/ns
P _D	Power Dissipation (TC = 25°C)		151	W
T _J , T _{STG}	Operating and Storage Temperat	ure Range	-55 to +150	°C
TL	Maximum Lead Temperature for S Purpose,1/8" from Case for 5 Sec	•	300	°C

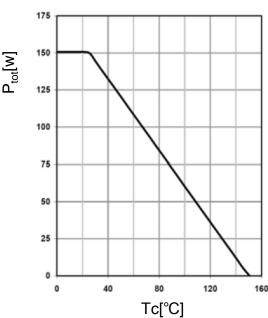
^{*} Drain current limited by maximum junction temperature. Maximum duty cycle D=0.75.

Thermal Characteristics

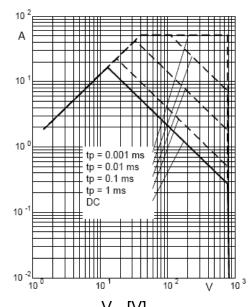
Symbol	Parameter	TSK_A80R240S1	Unit
R _{θJC}	Thermal Resistance, Junction-to-Case	0.83	°C/W
Recs	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	62	°C/W

Truesemi® Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characteri	stics				•	
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A,$ $T_J = 25^{\circ}C$	800	-	-	V
		$V_{GS} = 0V, I_D = 250\mu A, T_J = 150^{\circ}C$	-	850	-	V
ΔBV_{DSS} / Δ_{TJ}	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, Referenced to 25°C	-	0.6	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 800V, V_{GS} = 0V$ -T _J = 150°C	-	- 10	1 -	μA μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V$, $V_{DS} = 0V$	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30V, V_{DS} = 0V$	-	-	-100	nA
On Characteri	stics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 9A	-	0.22	0.26	Ω
g _{FS}	Forward Trans conductance	V _{DS} = 40V, I _D = 18A	-	19	-	S
Dynamic Char	racteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz	-	1290	-	pF
C _{oss}	Output Capacitance		-	380	-	pF
C _{rss}	Reverse Transfer Capacitance		-	22	-	pF
Switching Cha	racteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400V, I_{D} = 10A$ $R_{G} = 25\Omega(Note 4)$	-	40	-	ns
t _r	Turn-On Rise Time		-	21	-	ns
t _{d(off)}	Turn-Off Delay Time		-	139	-	ns
t _f	Turn-Off Fall Time		-	21	-	ns
Q_g	Total Gate Charge	$V_{DS} = 450V, I_{D} = 10A$ $V_{GS} = 10V \text{ (Note 4)}$	-	27.5	-	nC
Q_{gs}	Gate-Source Charge		-	6.3	-	nC
Q_{gd}	Gate-Drain Charge		-	11.2	-	nC
Drain-Source I	Diode Characteristics and Maximum Ratin	gs				
I _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	18	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	-	51	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _F = 20A	-	1	1.5	V
t _{rr}	Reverse Recovery Time	$V_R = 400V, VGS = 0V,$	-	710	-	ns
Q _{rr}	Reverse Recovery Charge	I _F = 20A, dI _F /dt =100A/μs	-	13	-	μC
I _{rrm}	Peak reverse recovery Current		-	33	-	Α
		I .	1		1	

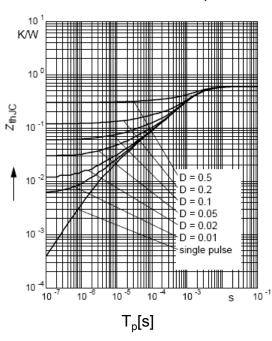

NOTES:

Repetitive Rating: Pulse width limited by maximum junction temperature 2. l_{As} =3.5A, V_{DD} =50V, Starting TJ=25 °C 3. l_{SD} ≤ID, di/dt ≤ 200A/us, V_{DD} ≤ BV_{DSS}, Starting TJ = 25 °C 4. Essentially Independent of Operating Temperature Typical Characteristics

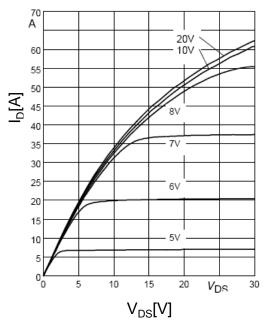


Typical Performance Characteristics

Power dissipation



Safe operating area TC=25 °C

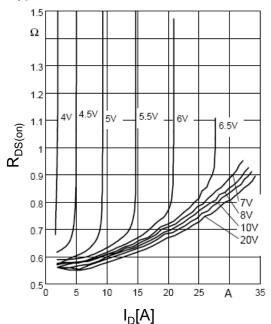


 $V_{DS}[V] \\ I_{D} = f(V_{DS}); \ V_{GS} > 7V; \ D = 0; \ parameter \ t_{p}$

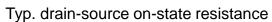
Max. transient thermal impedance

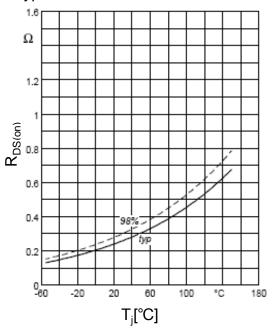
Typ. output characteristics $T_i=25$ °C

 I_{D} =f(V_{DS}); T_j=25 °C ; parameter: V_{GS}

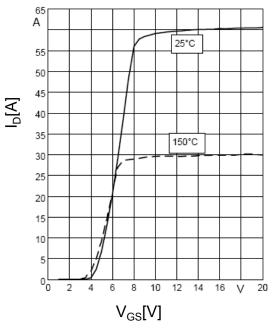


Truesemi® **Typical Performance Characteristics**

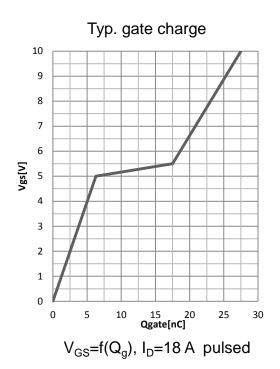

Typ. output characteristics 10V Α 25 6.5V 6٧ 20 5.5V 15 10 4.5V V_{DS} $V_{DS}[V]$

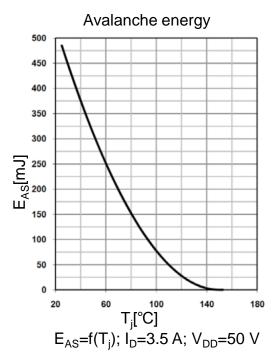

 $I_D = f(V_{DS}); T_i = 150 \,^{\circ}\text{C}; parameter: V_{GS}$

Typ. drain-source on-state resistance

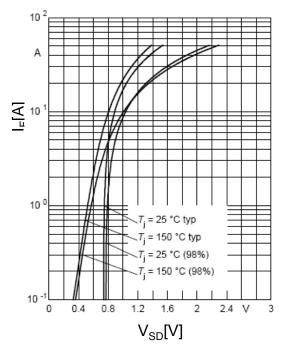

 $R_{DS}(on)=f(I_D); T_i=150 ^{\circ}C; parameter:V_{GS}$

 $R_{DS}(on)=f(T_i); I_D=11 A; V_{GS}=10 V$

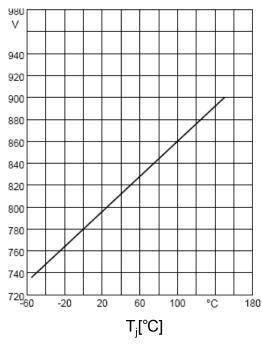

Typ. transfer characteristics



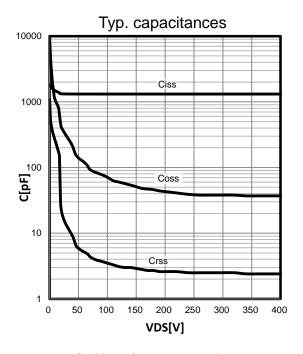
 $I_D = f(V_{GS}); V_{DS} = 40V$

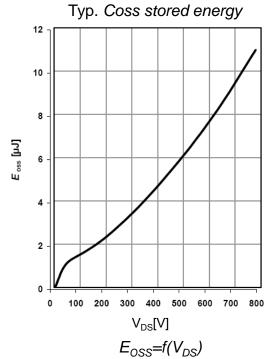


Truesemi® Typical Performance Characteristics

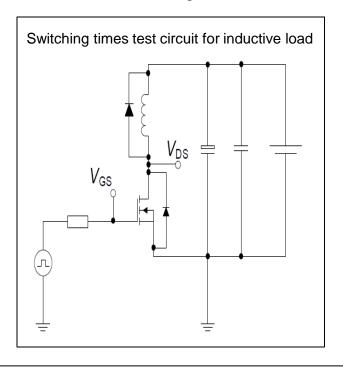


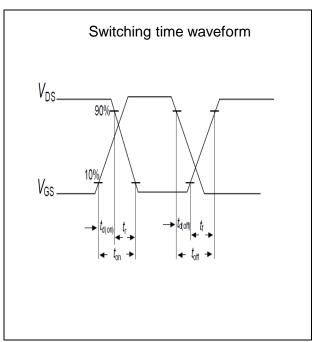
Forward characteristics of reverse diode

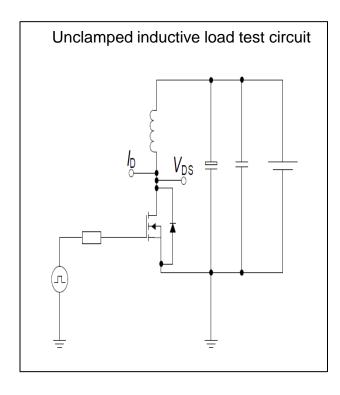

 $I_F = f(V_{SD})$; parameter: T_i

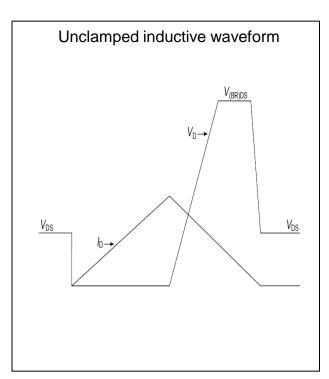

Drain-source breakdown voltage

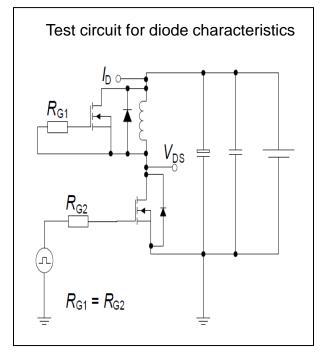
 $V_{BR(DSS)}=f(T_j); I_D=1.0 \text{ mA}$

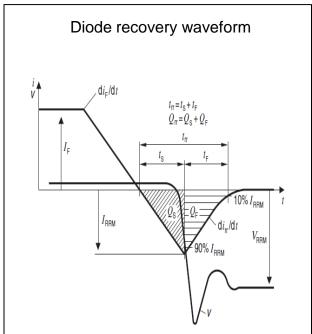





Test circuits


Switching times test circuit and waveform for inductive load


Unclamped inductive load test circuit and waveform



Test circuit and waveform for diode characteristics

DISCLAIMER

TRUESEMI SEMICONDUCTOR reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, TRUESEMI SEMICONDUCTOR does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, TRUESEMI SEMICONDUCTOR hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling TRUESEMI SEMICONDUCTOR products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify TRUESEMI SEMICONDUCTOR for any damages arising or resulting from such use or sale.

INFORMATION

For further information on technology, delivery terms and conditions and prices, please contact TRUESEMI SEMICONDUCTOR office or website (www.truesemi.com).

单击下面可查看定价,库存,交付和生命周期等信息

>>Truesemi(信安)