1. Applications

- Office Equipment
- Programmable Logic Controllers (PLCs)
- AC Adapters
- I/O Interface Boards

2. General

The TLP185 consist of a photo transistor optically coupled to gallium arsenide infrared emitting diode. The TLP185 photocoupler is housed in the very small and thin SO6 package. Since TLP185 is smaller than DIP package, it's suitable for high-density surface mounting application such as programmable controllers.

3. Features

- (1) Collector-emitter voltage: 80 V (min)
- (2) Current transfer ratio: 50% (min) Rank GB: 100% (min)
- (3) Isolation voltage: 3750 Vrms (min)
- (4) Operating temperature: -55 to 110 °C
- (5) Safety standards UL-approved: UL1577, File No.E492440

4. Packaging and Pin Assignment

5. Principle of Operation

5.1. Mechanical Parameters

Characteristics	Min	Unit
Creepage distances	5.0	mm
Clearance	5.0	
Internal isolation thickness	0.4	

6. Absolute Maximum Ratings (Note) (Unless otherwise specified, $T_a = 25$ °C)

	Characteristics		Symbol	Note	Rating	Unit
LED	Input forward current		I _F		50	mA
	Input forward current derating	(T _a ≥ 90 °C)	$\Delta I_F / \Delta T_a$		-1.5	mA/°C
	Input forward current (pulsed)		I _{FP}	(Note 1)	1	A
	Input reverse voltage		V _R		5	V
	Input power dissipation		PD		100	mW
	Input power dissipation derating	(T _a ≥ 90 °C)	$\Delta P_D / \Delta T_a$		-2.86	mW/°C
	Junction temperature		Tj		125	°C
Detector	Collector-emitter voltage		V _{CEO}		80	V
	Emitter-collector voltage		V _{ECO}		7	V
	Collector current		Ι _C		50	mA
	Collector power dissipation		P _C		150	mW
	Collector power dissipation derating	$(T_a \ge 25 \ ^\circ C)$	$\Delta P_C / \Delta T_a$		-1.5	mW/°C
	Junction temperature		Tj		125	°C
Common	Operating temperature		T _{opr}		-55 to 110	°C
	Storage temperature		T _{stg}		-55 to 125]
	Lead soldering temperature	(10 s)	T _{sol}		260	
	Total power dissipation		PT		200	mW
	Isolation voltage	AC, 60 s, R.H. ≤ 60%	BVS	(Note 2)	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Note 1: Pulse width (PW) \leq 100 $\mu s,\,f$ = 100 Hz

Note 2: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4 and 6 are shorted together.

7. Electrical Characteristics (Unless otherwise specified, $T_a = 25$ °C)

	Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
LED	Input forward voltage	V _F		I _F = 10 mA	1.1	1.25	1.4	V
	Input reverse current	I _R		V _R = 5 V		—	5	μA
	Input capacitance	Ct		V = 0 V, f = 1 MHz	_	30	_	pF
Detector	Collector-emitter breakdown voltage	V _{(BR)CEO}		I _C = 0.5 mA	80	—		V
	Emitter-collector breakdown voltage	V _{(BR)ECO}		I _E = 0.1 mA	7	—		
	Dark Current	I _{DARK}		V _{CE} = 48 V	_	0.01	0.08	μA
				V _{CE} = 48 V, T _a = 85 °C		2	50	
	Collector-emitter capacitance	C _{CE}		V = 0 V, f = 1 MHz		10		pF

8. Coupled Electrical Characteristics (Unless otherwise specified, $T_a = 25$ °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Current transfer ratio	I _C /I _F	(Note 1)	(Note 1) I _F = 5 mA, V _{CE} = 5 V		_	600	%
			I _F = 5 mA, V _{CE} = 5 V, Rank GB	100		600	
Saturated current transfer ratio	I _C /I _{F(sat)}		I _F = 1 mA, V _{CE} = 0.4 V	—	60	—	
			I_F = 1 mA, V_{CE} = 0.4 V, Rank GB	30		—	
Collector-emitter saturation	V _{CE(sat)}		I _C = 2.4 mA, I _F = 8 mA	_		0.3	V
voltage			I _C = 0.2 mA, I _F = 1 mA	—	0.2	—	
			I_{C} = 0.2 mA, I_{F} = 1 mA, Rank GB	—		0.3	
OFF-state collector current	I _{C(off)}		V _F = 0.7 V, V _{CE} = 48 V		1	10	μA

Note 1: See Table 8.1 for current transfer ratio.

Table 8.1 Current Transfer Ratio (CTR) Rank (Note) (Unless otherwise specified, $T_a = 25 \degree$ C)

Rank	Test Condition	Current transfer ratio I _C /I _F Min	Current transfer ratio I _C /I _F Max	Marking of Classification	Unit
Blank	I _F = 5 mA, V _{CE} = 5 V	50	600	Blank, YE, GR, GB, BL, Y+, G, G+, B	%
Y		50	150	YE, Y+	
GR		100	300	GR, G, G+	
GB		100	600	GB, GR, BL, G, G+, B	
BL		200	600	BL, B	
YH		75	150	Y+	
GRL		100	200	G	
GRH		150	300	G+	
BLL		200	400	В	

Note: Specify both the part number and a rank in this format when ordering. Example: TLP185GB

9. Isolation Characteristics (Unless otherwise specified, $T_a = 25 \text{ °C}$)

Characteristics	Symbol	Note Test Condition		Min	Тур.	Max	Unit
Total capacitance (input to output)	Cs	(Note 1)	V _S = 0 V, f = 1 MHz	—	0.8	_	pF
Isolation resistance	R _S	(Note 1)	V_S = 500 V, R.H. $\leq 60\%$	1 × 10 ¹²	1014	_	Ω
Isolation voltage	BVS	(Note 1)	AC, 60 s	3750	—	—	Vrms
			AC, 1 s in oil	_	10000	_	
			DC, 60 s in oil	_	10000	_	Vdc

Note 1: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4 and 6 are shorted together.

10. Switching Characteristics (Unless otherwise specified, $T_a = 25$ °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		V _{CC} = 10 V, I _C = 2 mA,	_	2	_	μS
Fall time	t _f		R _L = 100 Ω	_	3	_	
Turn-on time	t _{on}			_	3	_	
Turn-off time	t _{off}			_	3	_	
Turn-on time	t _{on}		See Fig. 10.1	_	0.5	_	
Storage time	ts		$V_{CC} = 5 V, I_F = 16 mA,$	_	25	_	
Turn-off time	t _{off}		1.2 1.2 1.2		40		

Fig. 10.1 Switching Time Test Circuit and Waveform

UDF®

11. Characteristics Curves (Note)

UDF®

Fig. 11.13 I_C - T_a

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

12. Soldering and Storage

12.1. Precautions for Soldering

The soldering temperature should be controlled as closely as possible to the conditions shown below, irrespective of whether a soldering iron or a reflow soldering method is used.

• When using soldering reflow.

The soldering temperature profile is based on the package surface temperature.

(See the figure shown below, which is based on the package surface temperature.)

Reflow soldering must be performed once or twice.

The mounting should be completed with the interval from the first to the last mountings being 2 weeks.

	Symbol	Min	Max	Unit
Preheat temperature	Τs	150	200	°C
Preheat time	ts	60	120	s
Ramp-up rate $(T_L \text{ to } T_P)$			3	°C/s
Liquidus temperature	TL	217		°C
Time above T _L	tL	60	150	s
Peak temperature	Τ _Ρ		260	°C
Time during which T_c is between ($T_P - 5$) and T_P	t₽		30	s
Ramp-down rate $(T_P \text{ to } T_L)$			6	°C/s

• When using soldering flow

Preheat the device at a temperature of 150 °C (package surface temperature) for 60 to 120 seconds. Mounting condition of 260 °C within 10 seconds is recommended.

Flow soldering must be performed once.

When using soldering Iron

Complete soldering within 10 seconds for lead temperature not exceeding 260 °C or within 3 seconds not exceeding 350 °C

Heating by soldering iron must be done only once per lead.

12.2. Precautions for General Storage

- Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5 $^\circ C$ to 35 $^\circ C$ and 45 % to 75 %, respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- \cdot $\,$ When restoring devices after removal from their packing, use anti-static containers.
- Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

单击下面可查看定价,库存,交付和生命周期等信息

>>UDF(优迪半导体)