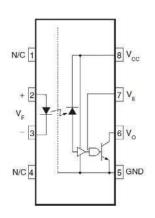


Description

The UMW 6N137 optocoupler consists of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate withastrobable output. This output features an open collector, thereby permitting wired OR outputs. The coupled parameters are guaranteed over the temperature range of -40° C to $+85^{\circ}$ C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA (fan out of 8).

An internal noise shield provides superior common mode rejection of typically $10kV/\mu s$. The UMW 6N137 has a minimum CMR of $5kV/\mu s$.

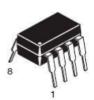
Features


- Very high speed 10 MBit/s
- Superior CMR $-10 \text{ kV/}\mu\text{s}$
- Double working voltage-480V
- Fan-out of 8 over -40 \mathbb{C} to +85 \mathbb{C}
- Logic gate output
- Strobable output
- Wired OR-open collector
- UL approved: UL1577, file No. E492440

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface

Package Outlines


Schematics

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

Absolute Maximum Ratings ($T_A = 25 \, \text{°C}$ unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
Tstg	Storage Temperature	-55 to +125	$^{\circ}\mathbb{C}$
Topr	Operating Temperature	-40 to +85	$^{\circ}\mathbb{C}$
Tsol	Lead Solder Temperature (for wave soldering only)	260 for 10 sec	$^{\circ}\mathbb{C}$
EMITTER			
I_F	DC/Average Forward Input Current	50	mA
$V_{\rm E}$	Enable Input Voltage Not to Exceed V _{CC} by more than 500mV	5.5	V
V_R	Reverse Input Voltage	5.0	V
$P_{\rm I}$	Power Dissipation	100	mW
DETECTOR		•	
V _{CC} (1 minute max)	Supply Voltage	7.0	V
Io	Output Current	50	mA
$V_{\rm O}$	Output Voltage	7.0	V
Po	Collector Output	85	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. We do not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
\mathbf{I}_{FL}	Input Current, Low Level	0	250	μA
\mathbf{I}_{FH}	Input Current, High Level	*6.3	15	mA
V_{CC}	Supply Voltage, Output	4.5	5.5	V
V_{EL}	Enable Voltage, Low Level		0.8	V
V_{EH}	Enable Voltage, High Level	2.0	V_{CC}	V
T_{A}	A Low Level Supply Current		+85	$^{\circ}\mathbb{C}$
N	Fan Out (TTL load)		8	

Note: *6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less.

Electro-optical Characteristics (T_A= 0 to 70 °C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
EMITTER	EMITTER					
V_{F}	Input Forward Voltage	$T_{A} = 10$ $T_{A} = 25$ C		1.4	1.8 1.75	V
Bvr	Input Reverse Breakdown Voltage	$I_R = 10 \mu\text{A}$	5.0			V
Cin	Input Capacitance	$V_F = 0$, $f = 1MHz$		60		pF
$\Delta V_F/\Delta T_A$	Input Diode Temperature Coefficient	$I_F = 10 \text{mA}$		-1.4		mV/° C
DETECTO	R					
Іссн	High Level Supply Current	$V_{CC} = 5.5V, I_F = 0mA, V_E = 0.5V$		7	10	mA
Iccl	Low Level Supply Current	$V_{CC} = 5.5V, I_F = 10mA$		9	13	mA
IEL	Low Level Enable Current	$V_{CC} = 5.5V, V_{E} = 0.5V$		-0.8	-1.6	mA
Іен	High Level Enable Current	$V_{CC} = 5.5V, V_E = 2.0V$		-0.6	-1.6	mA
VEH	High Level Enable Voltage	$V_{CC} = 5.5V, I_F = 10mA$	2.0			V
$V_{\rm EL}$	Low Level Enable Voltage	$V_{cc} = 5.5V, I_F = 10mA^{(5)}$			0.8	V

Switching Characteristics (T_A -40 ℃ to +85 ℃, V cc= 5V, I_F= 7.5mA unless otherwise specified)

Symbol	AC Characteristics	Test Conditions		Min.	Typ.*	Max.	Unit
	Propagation Delay Time to	$R_L = 350 \Omega$,	$T_A = 25 $	20	45	75	
Трін	Output HIGH Level	C _L =15pF ⁽⁴⁾ (Fig. 12)				100	ns
Трнг	Propagation Delay Time to Output LOW Level	$T_{A} = 25 \text{ °C}^{(5)}$ $R_{L} = 350 \Omega$, $C_{L} = 15 \text{pF}$ (Fig.	12)	25	45	75 100	ns
TPHL-TPLH	Pulse Width Distortion	$(R_L = 350 \Omega, C_L = 15pF (Fig.$			3	35	ns
$t_{\rm r}$	Output Rise Time (10–90%)	$R_L = 350 \Omega$, $C_L = 15pF^{(0)}$ (F	ig. 12)		50		ns
t_{f}	Output Rise Time (90–10%)	$R_L = 350 \Omega$, $C_L = 15pF^{(1)}$ (F.	ig. 12)		12		ns
	Enable Propagation Delay	$I_F = 7.5 \text{mA}, V_{EH} = 3.5 \text{V}, R_L = 350 \text{M}$	Ω ,				
t elh	Time to Output HIGH Level	$C_L = 15pF^{(8)}$ (Fig. 13)			20		ns
	Enable Propagation Delay	$I_F = 7.5 \text{mA}, V_{EH} = 3.5 \text{V}, R_L = 350$	0Ω,				
t ehl	Time to Output LOW Level	$C_L = 15pF^{(9)}$ (Fig. 13)			20		ns
	Common Mode Transient	$T_A = 25 \text{°C}, V_{CM} = 50 \text{V}$					
CM _H	Immunity (at Output HIGH	(Peak), $I_F = 0mA$, V_{OH} (Min.)	= 2.0 V,	5000	10000		V/µs
	Level)	$R_L = 350\Omega(10)$ (Fig. 14)					•
	Common Mode Transient	$R_L = 350\Omega, I_F = 7.5 \text{mA},$					
CML	Immunity (at Output LOW	V_{OL} (Max.) = 0.8V, T_A = 25 °C	C (11) (Fig. 14)	5000	10000		V/µs
	Level)						•

Electrical Characteristics (Continued)

Transfer Characteristics ($T_A = -40$ to +85 °C unless otherwise specified)

	Symbol	DC Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
			$V_{CC} = 5.5V, V_O = 5.5V,$				
	Іон	HIGH Level Output Current	$I_F = 250 \mu\text{A}, \ V_E = 2.0 V^{(2)}$			100	μA
			$V_{CC} = 5.5V, I_F = 5mA,$				
	V_{OL}	LOW Level Output Current	$V_E = 2.0V$, $I_{CL} = 13mA^{(2)}$		0.35	0.6	V
ſ	т	T (T) 1 11 C	$V_{CC} = 5.5V, V_O = 0.6V,$		2	~	
1	$\mathbf{I}_{ ext{FT}}$	Input Threshold Current	$V_E = 2.0V, I_{OL} = 13mA$	$= 2.0 \text{V}, I_{\text{OL}} = 13 \text{mA}$	3	5	mA

Isolation Characteristics (TA = -40 $^{\circ}$ C to +85 $^{\circ}$ C unless otherwise specified.)

Symbol	Characteristics	Test Conditions	Min.	Typ.* N	ax.	Unit
	Input-Output Insulation	Relative humidity = 45% , $T_A = 25\%$,				
II-O	Leakage Current	$t = 5s, V_{I-O} = 3000 \text{ VDC}^{(12)}$			10*	μΑ
	Withstand Insulation Test	$RH < 50\%, T_A = 25^{\circ} C,$				
$V_{\rm ISO}$	Voltage	$I_{I-O} \le 2 \mu A, t = 1 \text{min.}^{(12)}$	2500			V_{RMS}
R _{I-O}	Resistance (Input to Output)	$V_{I-O} = 500V^{(12)}$	10	12		Ω
C _{I-O}	Capacitance (Input to Output)	$f = 1MHz^{(12)}$		0.6		pF

^{*} All Typicalsat VCC = 5V

- 10.CM $_H$ The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., VOUT> 2.0V). Measured in volts per microsecond (V/ μ s).
- 11.CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., V_{OUT} < 0.8V). Measured in volts per microsecond ($V_{\mu s}$).
- 12. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.

^{*} TA = 25 ℃

^{*} Note:

^{1.} The V_{CC} supply to each optoisolator must be bypassed by a $0.1\,\mu\text{F}$ capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins of each device.

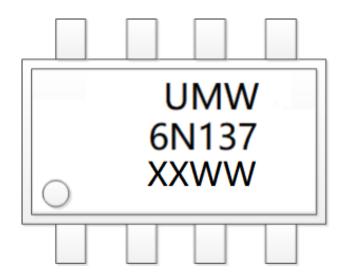
^{2.} One channel.

^{3.} Enable Input – No pull up resistor required as the device has an internal pull up resistor.

^{4.}t_{PLH} – Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.

 $^{5.}t_{PHL}$ – Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.

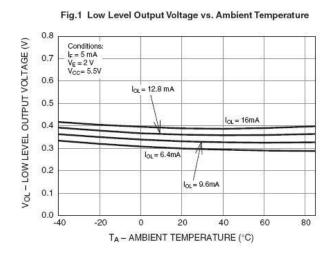
^{6.} t_{Γ} – Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.

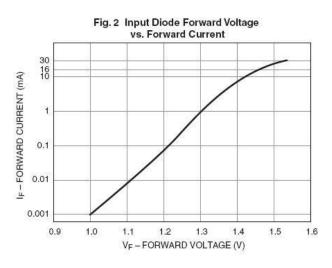

^{7.} tf - Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.

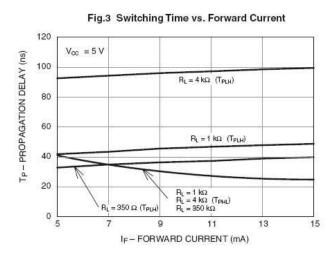
^{8.}tELH – Enable input propagation delay is measured from the 1.5V level on the HIGH to LOW transition of the input voltage pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.

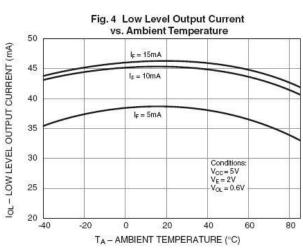
 $^{9.}t_{EHL}$ – Enable input propagation delay is measured from the 1.5V level on the LOW to HIGH transition of the input voltage pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.

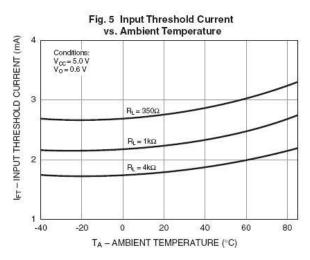
Marking

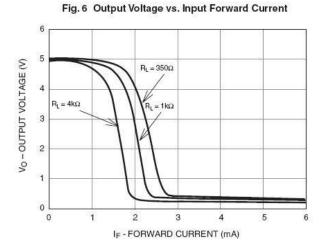

- "XX" denotes YEAR;
- "WW" denotes WEEK

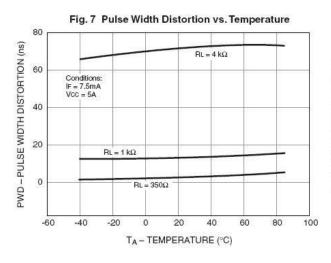

Order Code

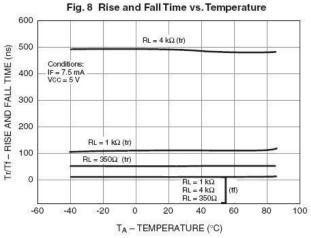

Order Code	Description	Base qty
UMW 6N137M	Iron frame, DIP, Halogen/lead -free	3250/BOX
UMW 6N137S	Copper frame,SOP-6,Halogen-free	1000/REEL

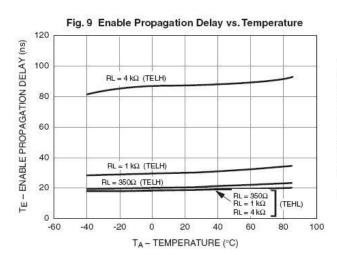


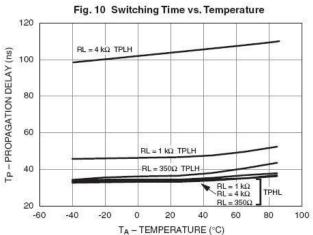

Typical Performance Curves

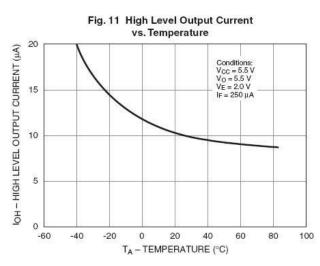











Typical Performance Curves (Continued)

Test Circuits

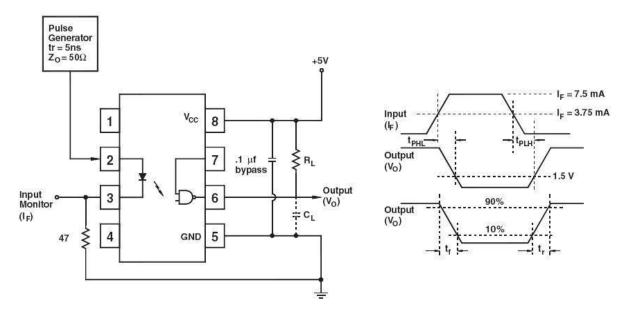


Fig. 12 Test Circuit and Waveforms for $t_{\rm PLH},\,t_{\rm PHL},\,t_{\rm r}$ and $t_{\rm f}$

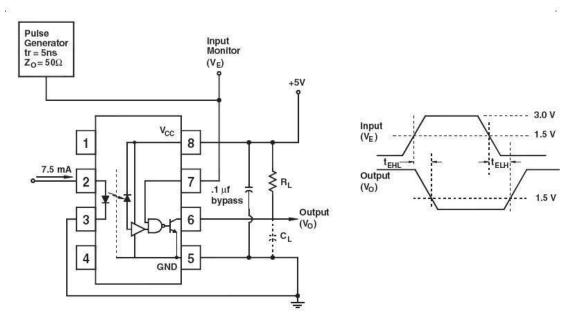


Fig. 13 Test Circuit t_{EHL} and t_{ELH}

Test Circuits (Continued)

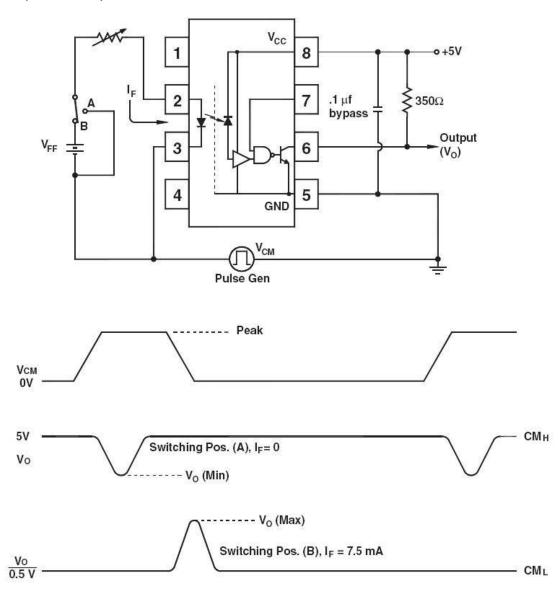
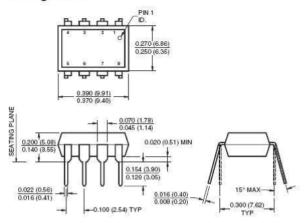
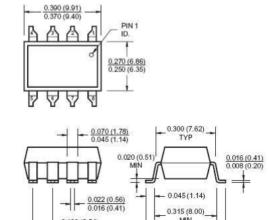



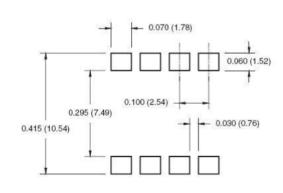
Fig. 14 Test Circuit Common Mode Transient Immunity



Package Dimensions

Through Hole

Surface Mount



0.405 (10.30) MAX.

Note: All dimensions are in inches (millimeters)

Lead Coplanarity: 0.004 (0.10) MAX

8-Pin DIP - Land Pattern

单击下面可查看定价,库存,交付和生命周期等信息

>>UMW(友台半导体)