2

Description

PD @3 (?)

The PESDHC3D12VU ESD protector is designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDA's. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The PESDHC3D12VU protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. The PESDHC3D12VU is available in a SOD-323 package with working voltages of 12 volt.

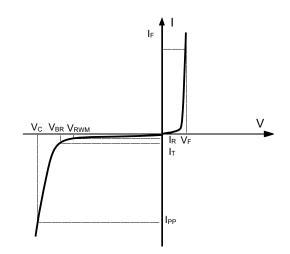
Feature

- 500W peak pulse power per line ($t_P = 8/20\mu s$)
- Replacement for MLV(0805)
- Unidirectional configurations
- Response Time is Typically < 1 ns
- Protect one I/O or power line
- Low clamping voltage

Applications

• Cell phone handsets and accessories

1


- Personal digital assistants (PDA's)
- Notebooks, desktops, and servers
- Portable instrumentation
- Cordless phones
- Digital cameras
- Peripherals
- MP3 players

Mechanical Characteristics

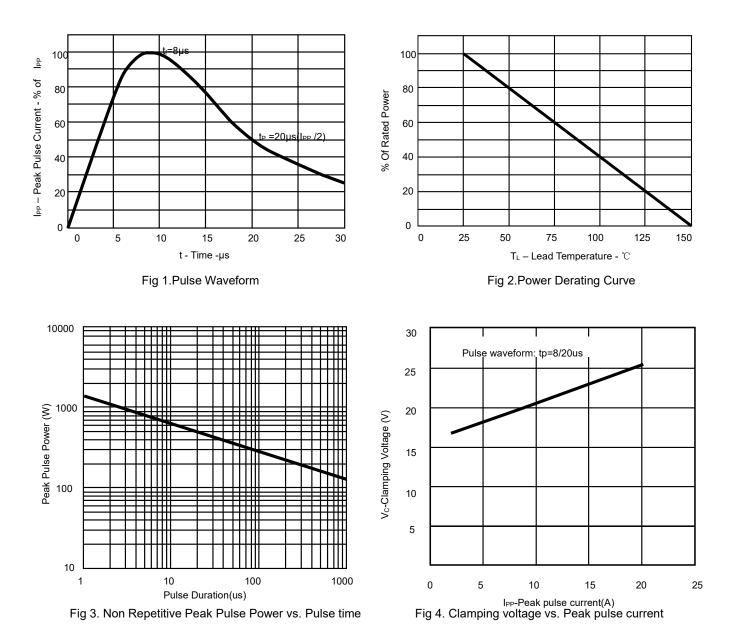
- Lead finish:100% matte Sn(Tin) Mounting
- position: Any
- Qualified max reflow temperature:260°C
- Pure tin plating: 7 ~ 17 um
- Pin flatness:≤3mil

Electronics Parameter

Symbol	Parameter		
V _{RWM}	Peak Reverse Working Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I⊤		
IT	Test Current		
IPP	Maximum Reverse Peak Pulse Current		
Vc	Clamping Voltage @ IPP		
P _{PP}	Peak Pulse Power		
CJ	Junction Capacitance		
IF	Forward Current		
VF	Forward Voltage @ I⊧		

Electrical characteristics per line@25°C(unless otherwise specified)

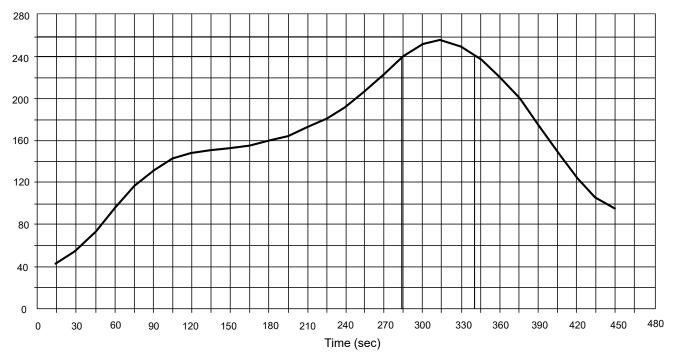
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Working Voltage	V _{RWM}				12	V
Breakdown Voltage	V _{BR}	I _t =1mA	13.5			V
Reverse Leakage Current	I _R	V _{RWM} =12V			1	μA
Forward Voltage	VF	I _F =10mA		0.8		V
Clamping Voltage	Vc	I _{PP} =5Α t _P = 8/20μS			19.0	V
Clamping Voltage	Vc	I _{PP} =20A t _P = 8/20μS			27.0	V
Junction Capacitance	Cj	V_R =2.5V f = 1MHz		100		pF


Absolute maximum rating@25℃

Rating	Symbol	Value	Units
Unidirectional Peak Pulse Power ($t_p=8/20\mu S$)	P _{pp}	500	W
Maximum Peak Pulse Current ($t_P = 8/20\mu S$)	I _{pp}	20	А
Lead Soldering Temperature	TL	260 (10 sec)	°C
Operating Temperature	TJ	-55 to +125	°C
Storage Temperature	Тѕтс	-55 to +150	°C

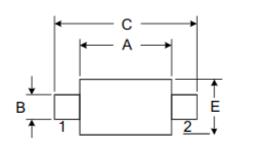
UNW® ®®®

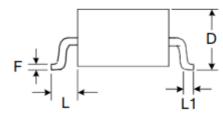
PESDHC3D12VU


Typical Characteristics

Solder Reflow Recommendation

Peak Temp=257°C, Ramp Rate=0.802deg. °C/sec

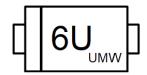

PCB Design


For TVS diodes a low-ohmic and low-inductive path to chassis earth is absolutely mandatory in order to achieve good ESD protection. Novices in the area of ESD protection should take following suggestions to heart:

- Do not use stubs, but place the cathode of the TVS diode directly on the signal trace.
- Do not make false economies and save copper for the ground connection.
- Place via holes to ground as close as possible to the anode of the TVS diode.
- Use as many via holes as possible for the ground connection.
- Keep the length of via holes in mind! The longer the more inductance they will have.

Outline Drawing – SOD323

UMW[®]®®®&



DIMENSIONS					
SYMBOL	MILLIMETER		INCHES		
	MIN	MAX	MIN	MAX	
Α	1.600	1.800	0.063	0.071	
В	0.250	0.350	0.010	0.014	
С	2.500	2.700	0.098	0.106	
D		1.000		0.039	
E	1.200	1.400	0.047	0.055	
F	0.080	0.150	0.003	0.006	
L	0.475 REF		0.019REF		
L1	0.250	0.400	0.010	0.016	
н	0.000	0.100	0.000	0.004	

Marking

Ordering information

Order code	Package	Base qty	Delivery mode
UMW PESDHC3D12VU	SOD-323	3000	Tape and reel

单击下面可查看定价,库存,交付和生命周期等信息

>>UMW(友台半导体)