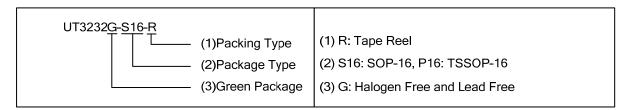


UT3232 **CMOS IC Preliminary**

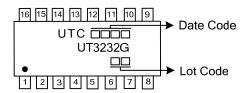
3.0V TO 5.5V LOW POWER **MULTICHANNEL RS-232 LINE** TRANSCEIVERS USING FOR 0.1µF EXTERNAL CAPACITORS

DESCRIPTION

The UTC UT3232 has two receivers and two drivers, and a dual charge-pump circuit. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3.0V to 5.5V supply. The device operates at data signaling rates up to 250kbit/s and a maximum of 35V/µs driver output slew rate.

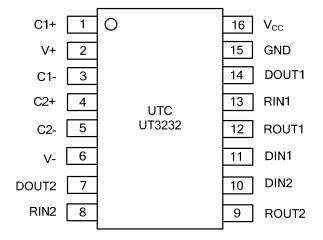


FEATURES


- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins
- * Meets the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- * Operates With 3.0V to 5.5V V_{CC} Supply
- * Operates Up To 250kbit/s Data Rate
- * Two Drivers and Two Receivers
- * External Capacitors 4×0.1µF
- * Accepts 5.0V Logic Input With 3.3V Supply

ORDERING INFORMATION

Ordering Number	Package	Packing
UT3232G-S16-R	SOP-16	Tape Reel
UT3232G-P16-R	TSSOP-16	Tape Reel


MARKING

www.unisonic.com.tw 1 of 7

Downloaded From Oneyac.com

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	C1+	Positive Terminal of Voltage-Doubler Charge-Pump Capacitor
2	V+	+5.5V Generated by the Charge Pump
3	C1-	Negative Terminal of Voltage-Doubler Charge-Pump Capacitor
4	C2+	Positive Terminal of Inverting Charge-Pump Capacitor
5	C2-	Negative Terminal of Inverting Charge-Pump Capacitor
6	V-	-5.5V Generated by the Charge Pump
7	DOUT2	RS-232 Driver Outputs
8	RIN2	RS-232 Receiver Inputs
9	ROUT2	TTL/CMOS Receiver Outputs
10	DIN2	TTL/CMOS Driver Inputs
11	DIN1	TTL/CMOS Driver Inputs
12	ROUT1	TTL/CMOS Receiver Outputs
13	RIN1	RS-232 Receiver Inputs
14	DOUT1	RS-232 Driver Outputs
15	GND	Ground
16	V _{CC}	+3.0V to +5.5V Supply Voltage

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** [Over operating free-air temperature range (unless otherwise noted)]

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage Range		V _{CC}	-0.3 ~ +6.0	V
Positive Output Supply Voltage Rar	nge (Note 2)	V+	-0.3 ~ +7.0	V
Negative Output Supply Voltage Ra	nge (Note 2)	V-	+0.3 ~ -7.0	V
Supply Voltage Difference (Note 2)		V+ - V-	+13	>
Input Voltage	Drivers	V	-0.3 ~ +6.0	V
Input Voltage	Receivers	V_{IN}	-25 ~ +25	V
Drivers		\	-13.2 ~ +13.2	V
Output Voltage Receivers		V_{OUT}	-0.3 ~ V _{CC} +0.3	V
Operating Virtual Junction Temperature		T_J	+150	°C
Storage Temperature		T _{STG}	-65 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Lunation to Ambient	SOP-16	0	105	°C // //
Junction to Ambient	TSSOP-16	ÐJA	118	°C/W

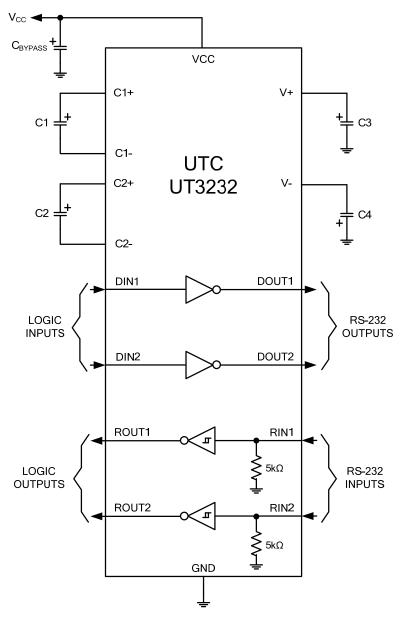
■ RECOMMENDED OPERATING CONDITIONS (See Note & Table 1)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage	V	V _{CC} =3.3V		3.0	3.3	3.6	V
Supply Voltage	V _{CC}	V _{CC} =5.0V		4.5	5.0	5.5	V
Driver and Control High-level Input	V	DIN	V_{CC} =3.3 V	2.0			V
Voltage	V_{IH}	DIIN	V _{CC} =5.5V	2.4			V
Driver and Control Low-level Input Voltage	V_{IL}	DIN				0.8	V
Driver and Control Input Voltage	V_{IN}	DIN				5.5	V
Receiver Input Voltage	V_{RIN}		•	-25		25	V
Operating Free-Air Temperature	T_A			0		70	°C

Notes: Test conditions are C1~C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2~C4=0.33 μ F at V_{CC}=5.0V±0.5V.

^{2.} All voltages are with respect to network GND.

■ **ELECTRICAL CHARACTERISTICS** [(over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 & Table 1)]


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP (Note 1)	MAX	UNIT
Supply Current	I _{CC}	No load		0.3	1.0	mA
DRIVER SECTION						
High-Level Output Voltage	V_{OH}	DOUT at R_L =3k Ω to GND, DIN=GND	+5.0	+5.4		V
Low-Level Output Voltage	V_{OL}	DOUT at R_L =3k Ω to GND, DIN= V_{CC}	-5.0	-5.4		V
High-Level Input Current	I _{OH}	$V_I = V_{CC}$		±0.01	±1	μΑ
Low-Level Input Current	I_{OL}	V₁ at GND		±0.01	±1	μA
Short-Circuit Output Current	-	V _{CC} =3.6V, V _{OUT} =0V		±35	±60	mA
(Note 2)	I _{OS}	V _{CC} =5.5V, V _{OUT} =0V		±35	±60	mA
Output Resistance	r_{O}	V _{CC} , V+ and V- =0V, V _{OUT} =±2.0V	300	10M		Ω
RECEIVER SECTION						
High-Level Output Voltage	V_{OH}	I _{OH} =-1.0mA	V _{CC} -0.6V	V _{CC} - 0.1V		V
Low-Level Output Voltage	V_{OL}	I _{OL} =1.6mA			0.4	V
Positive-Going Input Threshold	\/	V _{CC} =3.3V		1.5	2.4	V
Voltage	V_{IT+}	V _{CC} =5.0V		1.8	2.4	V
Negative-Going Input	V	V _{CC} =3.3V	0.6	1.2		V
Threshold Voltage	V_{IT}	V _{CC} =5.0V	0.8	1.5		V
Input Hysteresis	V_{HYS}	$V_{IT+} \sim V_{IT-}$		0.3		V
Input Resistance	R_{l}	V _I =±3.0V~±25V	3	5	7	kΩ

- Notes: 1. All typical values are at V_{CC} =3.3V or V_{CC} =5.0V, and T_A =25°C.
 - 2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.
 - 3. Test conditions are C1~C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2~C4=0.33 μ F at V_{CC}=5.0V±0.5V.
 - 4. Pulse skew is defined as |t_{PLH}-t_{PHL}| of each channel of the same device.
- **SWITCHING CHARACTERISTICS** [over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Table 1)]

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
DRIVER SECTION							
Maximum Data Rate		C _L =1000pF, R _L =3kΩ, One Driver Switching		150	250		Kbit/s
Pulse Skew (Note 4)	t _{SK(p)}	C _L =220pF~250	0pF, R _L =3kΩ~7kΩ		300		ns
Slew Rate, Transition Region	CD(+*)	$R_L = 3k\Omega \sim 7k\Omega$,	C _L =220pF~1000pF	5		35	\//uo
Siew Rate, Transition Region	SR(tr)	V_{CC} =3.3 V	C _L =220pF~2500pF	3		35	V/µs
RECEIVER SECTION	_	_					_
Propagation Delay Time, Low- to High-Level Output	t _{PLH}	C _L =150pF			300		ns
Propagation Delay Time, Highto Low-Level Output	t _{PHL}	C _L =150pF			300		ns
Output Enable Time	t _{EN}	$C_L=150pF, R_L=3k\Omega$			200		ns
Output Disable Time	t _{DIS}	$C_L=150pF, R_L=3k\Omega$			200		ns
Pulse Skew (Note 4)	t _{SK(P)}	t _{PLH} -t _{PHL}	_		300		ns

- Notes: 1. All typical values are at V_{CC}=3.3V or V_{CC}=5.0V, and T_A=25°C.
 - 2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.
 - 3. Test conditions are C1~C4=0.1µF at V_{CC}=3.3V±0.3V; C1=0.047µF, C2~C4=0.33µF at V_{CC}=5.0V±0.5V.
 - 4. Pulse skew is defined as |tplh-tphl| of each channel of the same device.

TYPICAL APPLICATION CIRCUIT

Notes: 1. C3 can be connected to V_{CC} or GND. 2. Resistor values shown are nominal. 3. NC: No internal connection.

- 4. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Table 1. Typical Operating Circuit and Capacitor Values

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0~3.6	0.22	0.22	0.22
3.15~3.6	0.1	0.1	0.1
4.5~5.5	0.047	0.33	0.047
3.0~5.5	0.22	1.0	0.22

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>UTC(友顺)