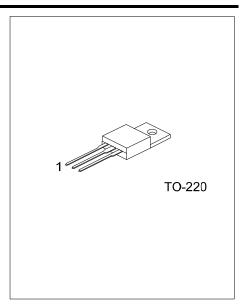
# UNISONIC TECHNOLOGIES CO., LTD

## **TUL1203**

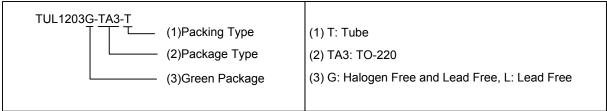
### NPN SILICON TRANSISTOR


## **HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR**

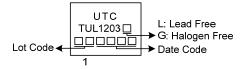
#### DESCRIPTION

The TUL1203 is manufactured by using high voltage Planar technology for high voltage capability and high switching speeds.

#### **FEATURES**


- \* BV<sub>CES</sub> Up To 1400V.
- \* Better Distribution Of Dynamic Parameters And Lot To Lot Spread
- \* High Switching Speed




#### ORDERING INFORMATION

| Ordering Number   |                | Dookses | Pin Assignment |   |   | Dealing |  |
|-------------------|----------------|---------|----------------|---|---|---------|--|
| Lead Free Plating | Halogen-Free   | Package | 1              | 2 | 3 | Packing |  |
| TUL1203L-TA3-T    | TUL1203G-TA3-T | TO-220  | В              | С | Е | Tube    |  |

Note: Pin Assignment: B: Base C: Collector E: Emitter



#### **MARKING**



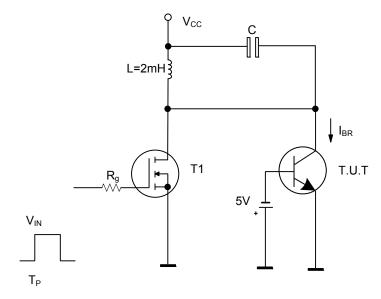
www.unisonic.com.tw 1 of 4 Copyright © 2019 Unisonic Technologies Co., Ltd QW-R203-038.F

#### ABSOLUTE MAXIMUM RATINGS

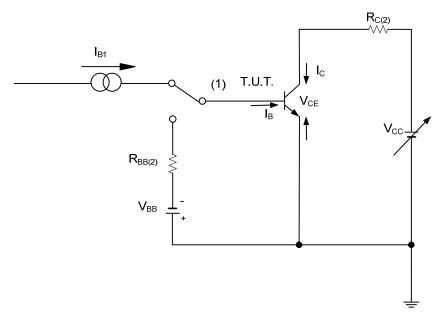
| PARAMETER                                       | SYMBOL           | RATINGS    | UNIT |
|-------------------------------------------------|------------------|------------|------|
| Collector-Base Voltage (I <sub>E</sub> = 0)     | $V_{CBO}$        | 1400       | V    |
| Collector-Emitter Voltage (V <sub>BE</sub> = 0) | $V_{CES}$        | 1400       | V    |
| Collector-Emitter Voltage (I <sub>B</sub> = 0)  | $V_{CEO}$        | 550        | V    |
| Emitter-Base Voltage (I <sub>C</sub> = 0)       | $V_{EBO}$        | 12         | V    |
| Collector Current                               | Ic               | 5          | Α    |
| Collector Peak Current (tp <5 ms)               | I <sub>CM</sub>  | 8          | Α    |
| Base Current                                    | I <sub>B</sub>   | 2          | Α    |
| Base Peak Current (tp < 5 ms)                   | I <sub>BM</sub>  | 4          | Α    |
| Power Dissipation (T <sub>C</sub> = 25°C)       | P <sub>D</sub>   | 100        | W    |
| Junction Temperature                            | TJ               | +150       | °C   |
| Storage Temperature                             | T <sub>STG</sub> | -65 ~ +150 | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

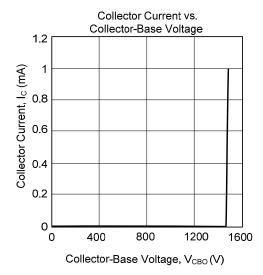
#### **■ THERMAL DATA**

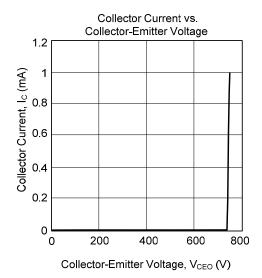

| PARAMETER        | SYMBOL        | RATINGS | UNIT  |  |
|------------------|---------------|---------|-------|--|
| Junction to Case | $\theta_{JC}$ | 1.25    | °C /W |  |

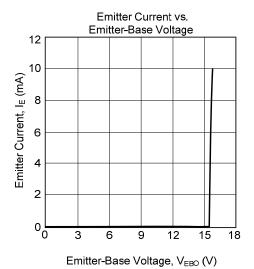
#### ■ **ELECTRICAL CHARACTERISTICS** (T<sub>c</sub> = 25°C unless otherwise specified)

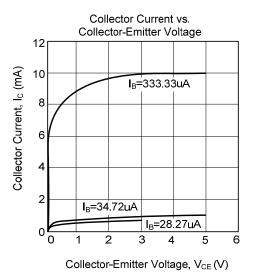

| PARAMETER                                                        |              | SYMBOL                                    | TEST CONDITIONS                                                       | MIN | TYP | MAX | UNIT |
|------------------------------------------------------------------|--------------|-------------------------------------------|-----------------------------------------------------------------------|-----|-----|-----|------|
| Collector Cut-off Current (V <sub>BE</sub> = 0)                  |              | I <sub>CES</sub>                          | V <sub>CE</sub> =1400V                                                |     |     | 100 | μΑ   |
| Emitter Cut-off Current (I <sub>B</sub> =                        | = 0)         | I <sub>EBO</sub> V <sub>EB</sub> =12V 100 |                                                                       | μΑ  |     |     |      |
| Collector-Emitter Sustaining Voltage (I <sub>B</sub> = 0) (Note) |              | V <sub>CEO(SUS)</sub>                     | I <sub>C</sub> =100mA                                                 | 550 |     |     | V    |
|                                                                  |              |                                           | I <sub>C</sub> =1A, I <sub>B</sub> =200mA                             |     |     | 0.5 | V    |
| Collector-Emitter Saturation Voltage (Note)                      |              | V <sub>CE(SAT)</sub>                      | I <sub>C</sub> =2A, I <sub>B</sub> =400mA                             |     |     | 0.7 | V    |
|                                                                  |              |                                           | I <sub>C</sub> =3A, I <sub>B</sub> =1A                                |     |     | 1.5 | V    |
| Base-Emitter Saturation Voltage (Note)                           |              | V <sub>BE(SAT)</sub>                      | I <sub>C</sub> =2A, I <sub>B</sub> =400mA                             |     |     | 1.5 | V    |
|                                                                  |              |                                           | I <sub>C</sub> =3A, I <sub>B</sub> =1A                                |     |     | 1.5 | V    |
| DC Current Gain (Note)                                           |              | h <sub>FE</sub>                           | I <sub>C</sub> =1mA, V <sub>CE</sub> =5V                              | 10  |     |     |      |
|                                                                  |              |                                           | I <sub>C</sub> =10mA, V <sub>CE</sub> =5V                             | 10  |     |     |      |
|                                                                  |              |                                           | $I_C$ =0.8A, $V_{CE}$ =3V                                             | 14  |     | 32  |      |
|                                                                  |              |                                           | I <sub>C</sub> =2A, V <sub>CE</sub> =5V                               | 9   |     | 28  |      |
| Resistive Load                                                   | Storage Time | ts                                        | I <sub>C</sub> =2A, V <sub>CC</sub> =150V                             |     | 2.5 | 3.0 | μs   |
|                                                                  | Fall Time    | $t_{F}$                                   | $I_{B1}$ =0.4A, $I_{B2}$ =-0.8A, $T_{P}$ =30 $\mu$ s                  |     | 0.2 | 0.3 | μs   |
| Avalanche Energy                                                 |              | E <sub>AR</sub>                           | L=2mH,C=1.8nF<br>I <sub>BR</sub> ≤2.5A,25°C <t<sub>C&lt;125°C</t<sub> | 6   |     |     | mJ   |

Note: Pulse Test: Pulse width = 300µs, Duty cycle≤1.5%


## **■ TEST CIRCUITS**





**Energy Rating Test Circuit** 




#### **■ TYPICAL CHARACTERISTICS**









UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

## 单击下面可查看定价,库存,交付和生命周期等信息

# >>UTC(友顺)