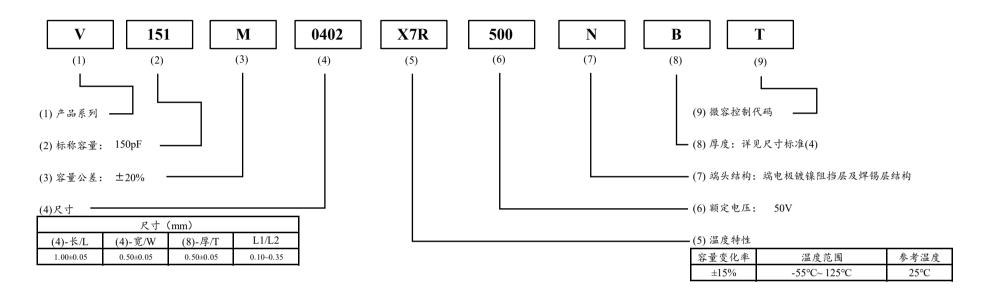


广东微容电子科技有限公司

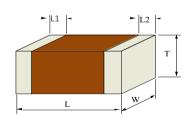
V151M0402X7R500NBT

 $(0402, X7R, 150pF, \pm 20\%, 50V)$

片式多层陶瓷电容器产品规格书


(Reference Sheet)

本规格书中包含的产品信息截至2023年11月10日,同时本规格书可能根据需要修改或者废止,届时将不另行通知。因此,您需要在采购之前确认准确的产品信息。


1.范围

此规格书适用于通用电子设备用片式多层陶瓷电容器(英文简称MLCC)。

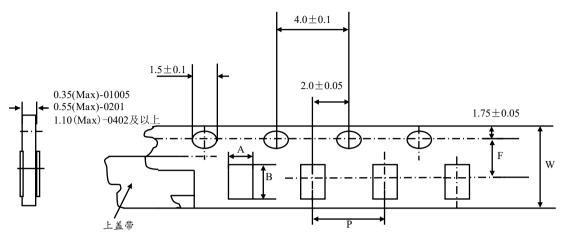
2.产品的命名规则

3.产品结构示意图

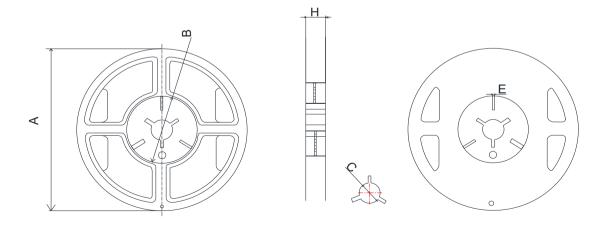
4.包装

代码	包装方式	最小包装数
Т	7英寸胶盘 纸带包装(W8P2)	10000 pcs./盘

5.产品技术指标


NO.	测试项目	技术指标	试验方法及条件		
1	预处理	将试	样置于150+/-5℃环境下放置1h+/-10min,后在室温放置24+/-2小时,再进行电性能测量。		
2	电容量 (C)	符合标称电容量及其允许偏差范围。	环境温度: 18~28℃ 环境湿度: ≤RH80%		
3	损耗角正切值(DF)	tgδ≤350×10^(-4)	测试频率: 1kHz±10% 测试电压: 1.0±0.2Vrms *产品测试前需对试样做预处理。		
4	绝缘电阻值(Ri)	Ri≥4000MΩ	环境温度: 18~28°C 环境湿度: ≤RH80% 施加额定电压60±5秒。		
5	耐电压	无击穿或飞狐	测试电压: 2.5×UR 测试时间: 60秒 充放电电流不超过50mA。		
6	电容量温度特性	ΔC/C≤±15%	容量测定应在每个温度点保持5分钟后进行测定。 容量的参考点为Step3的容量值。 测试电压: ≤1.0Vrms (详见测试报告) Step 温度 (°C) 1 25 2 -55 3 25 4 125 5 25 *产品测试前需对试样做预处理。		
7	耐焊接热	外观: 无可见损伤。 容量变化: ≤±7.5% DF值和Ri值: 满足初始指标。	将试样置于110~140℃预热30~60秒,浸入260±5℃的锡槽中10±1秒,浸入深度10mm;然后在室温放置24±2小时后进行外观检查与电性能测试。 *产品测试前需对试样做预处理。		
8	可焊性	上锡良好,端头润湿率大于95%。	将试样浸入含松香的乙醇溶液3-5秒, 在80~140°C预热30~60秒, 浸入245±5°C的熔融锡液2.0±0.2秒, 浸入深度10mm。		
9	端电极结合强度	外观: 无可见损伤。 容量变化: ≤±12.5%	将试样安装在试验基板上(图a),如图b施加垂直方向的力,以1mm/sec 的速度弯曲a,停留5±1秒,并测量电容量。 a=1mm C Q Q (Unit: mm)		

NO.	测试项目	技术指标	试验方法及条件	
		外观: 无可见损伤。	将试样安装在试验基板上(如图c),从电容侧面施加推力F,保持10±1秒。 F=5N	
10	附着力		里容器 试验基板	
11	振动	外观: 无可见损伤。 容量变化: ≤±7.5% DF值和Ri值: 满足初始指标。	将试样安装在试验基板上(如图c),振幅1.5mm,频率范围10~55Hz,简谐振动均匀变化,扫频周期1分钟,三个方向各持续2小时,总计6小时。	
12	温度快速变化	外观: 无可见损伤。 容量变化: ≤±15% DF值和Ri值: 满足初始指标。	将试样安装在试验基板上(如图c),按照1~4的顺序做温度快速变化试验。 循环次数: 5 然后在室温放置24±2小时后进行外观检查与电性能测试。	
13	潮湿负荷	外观: 无可见损伤。 容量变化: ≤±12.5% DF值: tgδ≤700×10^(-4) Ri值: Ri≥500MΩ	将试样安装在试验基板上(如图c)。 充、放电电流不超过50mA;然后在室温放置24±2小时后进行外观检查与电性能测试。 试验温度:40±2℃ 试验湿度:RH90~95% 试验电压:1.0×UR 试验时间:500小时 *产品测试前后需对试样做预处理。	
14	耐久性	外观: 无可见损伤。 容量变化: ≤±15% DF值: tgδ≤700×10^(-4) Ri值: Ri≥1000MΩ	将试样安装在试验基板上(如图c)。 充、放电电流不超过50mA; 然后在室温放置24±2小时后进行外观检查与电性能测试。 试验温度: 125℃ 试验电压: 1.5×UR 试验时间: 1000小时 *产品测试前后需对试样做预处理。	



6.载带尺寸

尺寸代码	尺寸 (mm)				
人小八两	方孔厚度(A)	方孔长度(B)	定位孔和方孔的中心距离 (F)	方孔间距 (P)	载带宽度(W)
0402	0.65 (Typ.)	1.15 (Typ.)	3.50±0.05	2.00±0.10	8.00±0.20

7.圆盘尺寸

圆盘尺寸	尺寸 (mm)				
	A	В	С	Е	Н
7"	Ф178±2.0	Ф60±2.0	Φ13±1.0	4±1.0	9.5±1.0

应用技术要求及注意事项

■贮存

贮存周期:产品贮存周期为12个月,超过12个月需重新提交检验。

贮存条件:温度:小于35℃;相对湿度:小于70%。

■ 环保要求

本规格书内的所有产品均符合欧盟RoHS\REACH指令以及《微容科技危害物质限用规格管理工作指引》要求。

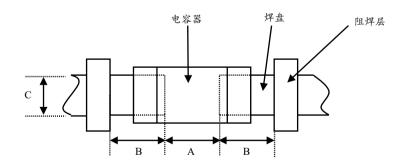
■ 设计选型

1.工作温度

a. 电容器使用过程中避免超过其上限类别温度。

b.表面温度以及自加热温度应该低于电容器的上限类别温度。

2.工作电压

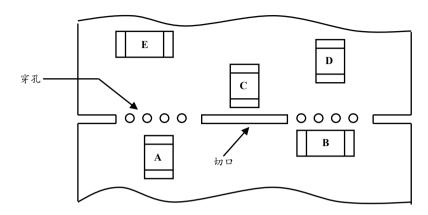

电容器的工作电压必须低于其额定电压。

■ PCB设计

1.焊盘设计

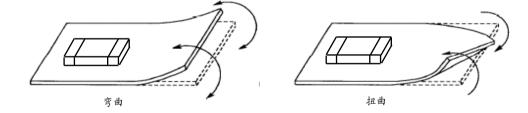
电容器贴装在PCB上时,端头焊锡量对电容器的性能有直接的联系。焊锡量越多,施加在电容器上的应力就越大。

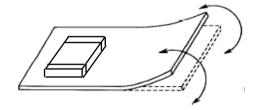
因此,设计焊盘时,必须考虑焊锡的尺寸和结构,请参考下面设计:


推荐的回流焊焊盘尺寸(单位:mm)

电容产品尺寸		焊盘尺寸		
尺寸代码	厚度代码	A	В	С
0402	В	0.30~0.50	0.35~0.45	$0.40 \sim 0.60$

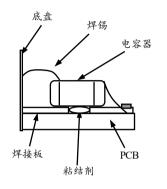
2. 电容器在PCB上的布局设计

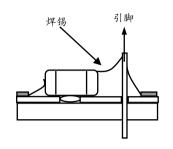

机械应力根据电容器在PCB上的位置不同而变化,请参考下面的设计方案:

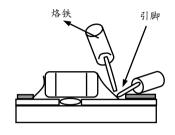

施加在电容器上的应力大小为: A>B=C>D>E

注意: 不要弯曲或扭曲 PCB, 否则电容器会发生断裂。请参考下面的例子:

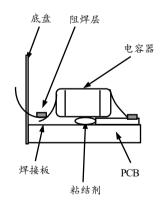
a. 应避免的情况

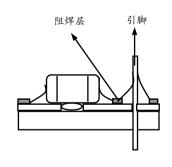

b. 建议的操作方式

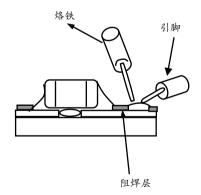




■ 焊锡的应用以及焊接方式


a. 以下的焊接方式应该避免



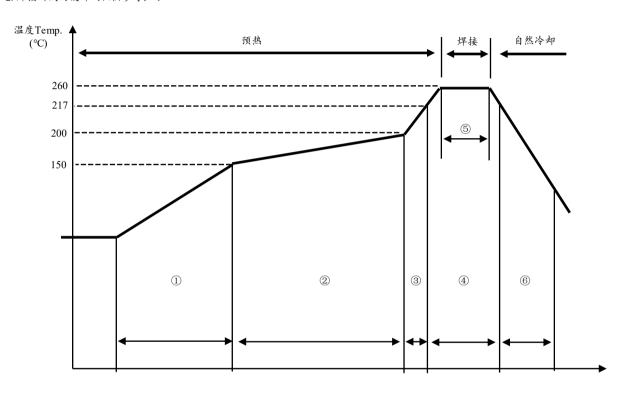


b. 请参考以下的焊接方式

■ 自动化设计的注意事项

如果安装头调整得过低, 会产生过高的应力, 导致电容器断裂。请参考下面的注意事项:

- a. 调整安装头的底部接触 PCB 的表面, 但不能用力压;
- b. 调整安装头的压力至 1~3N;
- c. 为了降低来自安装头的冲击力, 应该由 PCB 的底部提供支撑力。

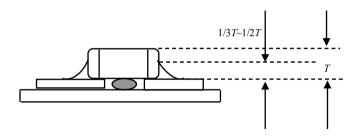

参考下面的设计实例:

	11 27 P 4 4	alicenter of the same
	避免设计方案	建议设计方案
单面贴装	製紋	支撑棒
双面贴装	焊层脱落	支撑棒

■ 焊接

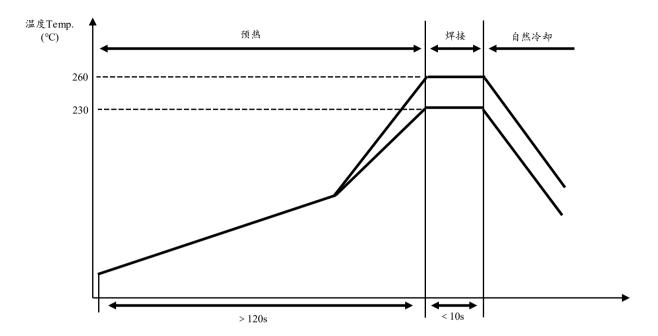
- 1. 焊剂的选择:
- a. 建议使用一种轻度活性焊剂 (氯含量少于 0.1wt%), 避免使用活性过强的焊剂。
- b. 请使用适量的焊剂, 避免过量。
- c. 当使用可溶水的焊剂时, 需要进行充分的洗涤。
- 2. 焊接曲线的设计(仅供参考):

回流焊焊接曲线


(1) 回流焊焊接条件:

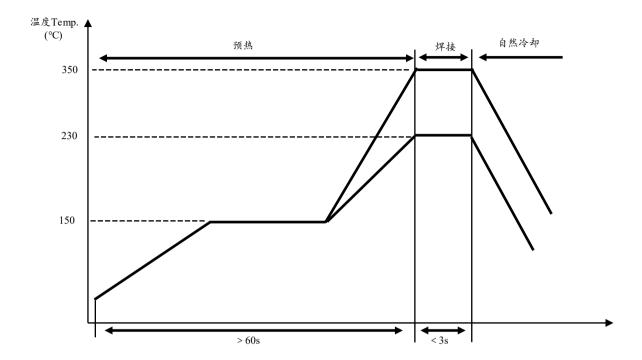
编号	回流焊焊接温区	回流焊焊接温度条件
1	预热1	升温速率: ≤3°C/s; 持续时间: 60s
2	恒温	升温速率: ≤1°C/s; 150~200°C持续时间: 60~120s
3	预热2	升温速率: 1~5°C/s
4	焊接区1	217℃持续60~150s
(5)	焊接区2	255~260℃持续30s以上
6	自然冷却	降温速率: ≪6°C/s

注意:


a. 过度的焊锡会在温度变化时产生较高的张力,从而导致裂纹。而少量的焊锡可能会导致电容器与PCB分离。 理想的条件是焊锡量控制在电容器厚度的 1/2~1/3,如下图所示:

b. 焊接时间尽量与建议的时间相近, 过长的时间会影响可焊效果。

(2) 波峰焊焊接条件:



注意:

- a. 确保电容器经过充分的预热。
- b. 电容器与焊锡之间的温度差不能高于 100~130°C。
- c. 波峰焊条件不能使用在仅为回流焊接设计的电容器上。

(3) 手工焊焊接条件:

注意:

- a. 使用 20W 的烙铁 (最大直径 1.0mm)。
- b. 烙铁不能够直接接触电容器。

