

10-PZ126PA080ME-M909F18Y

flow3xPHASE-SiC

1200 V / 80 mΩ

Features

- SiC-Power MOSFET's and Schottky Diodes
- 3 phase inverter topology with split output
- Improved switching behavior (reduced turn on energy and
- X-conduction) • Ultra Low Inductance with integrated DC-capacitors
- Switching frequency >100kHz
- Temperature sensor

Target Applications

- Solar Inverter
- Charger
- Power Supply

Types

• 10-PZ126PA080ME-M909F18Y

Maximum Ratings

Tj=25°C, unless otherwise specified									
Parameter	Symbol	Condition	Value	Unit					

T1, T2, T3, T4, T5, T6

Drain to source breakdown voltage	V _{DS}		1200	V
DC drain current	I _D	T _j =T _j max T _b =80°C T _c =80°C	16 20	А
Pulsed drain current	I _{Dpulse}	t _p limited by T _j max	60	А
Power dissipation	P _{tot}	T _j =T _j max T _h =80°C T _c =80°C	39 59	W
Gate-source peak voltage	V _{GS}		-10/25	V
Maximum Junction Temperature	T _j max		150	°C

D1, D2, D3, D4, D5, D6

Peak Repetitive Reverse Voltage	V _{RRM}		1200	V
Forward average current	I _{FAV}	T _j =T _j max T _h =80°C T _c =80°C	13 16	А
Non-Repetitive Peak Forward Surge Current	I _{FSM}	t _p =10ms T _j =25°C	64	А
Repetitive Peak Forward Surge Current	I _{FRM}	t _p limited by T _j max	39	А
Power dissipation per Diode	P _{tot}	$T_{j}=T_{j}max \qquad T_{h}=80^{\circ}C$ $T_{c}=80^{\circ}C$	34 51	W
Maximum Junction Temperature	T _j max		175	°C

Maximum Ratings

Tj=25°C, unless otherwise specified					
Parameter	Symbol	Condition		Value	Unit
C1, C2, C3					
Max.DC voltage	V _{MAX}		Tc=25°C	1000	V
Thermal Properties					
Storage temperature	T _{stg}			-40+125	°C
Operation temperature under switching condition	T _{op}			-40+(Tjmax - 25)	°C
Insulation Properties					
Insulation voltage		t=2s DC voltage		4000	V
Creepage distance				min 12,7	mm
Clearance				min 9,9	mm

Characteristic Values

Parameter	Symbol	C	onditions			Value			Unit
		V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	T _j	Min	Тур	Мах	

T1, T2, T3, T4, T5, T6										
Static drain to source ON resistance	R _{DS(on)}		20		20	Tj=25°C Tj=125°C		0,08 0,14		Ω
Gate threshold voltage	V _{(GS)th}	$V_{DS} = V_{GS}$		10	0,001	Tj=25°C Tj=125°C	1,7	2,2		V
Gate to Source Leakage Current	I _{gss}		20	0		Tj=25°C Tj=125°C			250	nA
Zero Gate Voltage Drain Current	I _{dss}		0	1200		Tj=25°C Tj=125°C			100	μA
Internal Gate Resistance	R_{G}	f=1MHz; V _{AC} =25m	۱V					4,6		Ω
Total gate charge	Qg							49,2		
Gate to source charge	Q_{gs}		0/20	800	20			10,8		nC
Gate to drain charge	Q_{gd}					Ti-25°C		18		
Input capacitance	C _{iss}					1j=25 C		950		
Output capacitance	C _{oss}	f=1MHz	0	1000				80		pF
Reverse transfer capacitance	C _{rss}							6,5		
Thermal resistance chip to heatsink per chip	R _{thJH}	Phase-Change Material						1,79		K/W

D1, D2, D3, D4, D5, D6										
Forward voltage	$V_{\rm F}$				7,5	Tj=25°C Tj=125°C		1,45 1,75	1,8	V
Reverse leakage current	Irm			1200		Tj=25°C Tj=125°C			250	μA
Thermal resistance chip to heatsink per chip	R _{thJH}	Phase-Change Material						2,81		К/W

Single ended configuration

T1, T2, T3, T4, T5, T6								
Turn On Delay Time	t _{d(ON)}					Tj=25℃ Tj=125℃	11 11	
Rise Time	t _r	t _r				Tj=25℃ Tj=125℃	5 4	
Turn off delay time	t _{d(OFF)}	Rgoff=4 Ω	16	700	16	Tj=25°C Tj=125°C	37 39	115
Fall time	t _f	Rgon=4 Ω	10	100	10	Tj=25°C Tj=125°C	13 14	
Turn-on energy loss per pulse	E _{on}					Tj=25°C Tj=125°C	0,112 0,103	m₩s
Turn-off energy loss per pulse	E _{off}					Tj=25°C Tj=125°C	0,058 0,058	1110/3

D1, D2, D3, D4, D5, D6

Peak recovery current	I _{RRM}					Tj=25°C Tj=125°C	18 19	А
Reverse recovery time	t _{rr}					Tj=25°C Tj=125°C	10 10	ns
Reverse recovery charge	Q _{rr}	Rgon=4 Ω	16	700	16	Tj=25°C Tj=125°C	0,094 0,098	μC
Reverse recovered energy	E _{rec}					Tj=25°C Tj=125°C	0,026 0,031	mWs
Peak rate of fall of recovery current	di(rec)max /dt					Tj=25°C Tj=125°C	4563 4485	A/µs

Characteristic Values

Parameter	Symbol	c	onditions			Value			Unit
		V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	l _C [A] or I _F [A] or I _D [A]	T _j	Min	Тур	Max	

Half bridge configuration

D1, D2, D3, D4, D5, D6								
Peak reverse recovery current	I _{RRM}					Tj=25℃ Tj=125℃	26 34	А
Reverse recovery time	t _{rr}					Tj=25℃ Tj=125℃	16 15	ns
Reverse recovered charge	Q _{rr}	Rgon=4 Ω	-5/16	700	16	Tj=25°C Tj=125°C	0,232 0,234	μC
Peak rate of fall of recovery current	di(rec)max /dt					Tj=25°C Tj=125°C	6761 9363	A/µs
Reverse recovered energy	Erec					Tj=25°C Tj=125°C	0,084 0,081	mWs
T1, T2, T3, T4, T5, T6	twom					Tj=25°C	14	
Turn On Delay Time Rise Time	t _{d(ON)}					Tj=25°C Tj=25°C Tj=25°C	13	
Turn off delay time	$t_{\rm d(OFF)}$	Rgoff=4 Ω	-5/16	700	16	Tj=125°C Tj=125°C Tj=125°C	4 45 48	ns
Fall time	t _f	Rgon=4 Ω	-5/10	100	10	Tj=25°C Tj=125°C	7 6	
Turn-on energy loss per pulse	Eon					Tj=25°C Tj=125°C	0,152 0,140	m)//a
Turn-off energy loss per pulse	E _{off}					Tj=25°C Tj=125°C	0,057 0,058	nivvs

Splitted output configuration

T1, T2, T3, T4, T5, T6										
Turn-on delay time	t					Tj=25°C		15		
	-d(on)	_				Tj=125°C		14		
Rise time	t _r					Tj=25°C		4		
		-				Ti=125°C		30		ns
Turn-off delay time	t _{d(off)}	Raoff=4 Q				Ti=125°C		32		
E-II time -		Raon=4 Ω	-8/16	700	16	Tj=25°C		17		1
Failtime	τ _f	5				Tj=125°C		13		
Turn-on energy loss per pulse	E.,					Tj=25°C		0,058		
	-on					Tj=125°C		0,042		mWs
Turn-off energy loss per pulse	Eoff					Tj=25°C		0,075		
						1=125-0		0,074		
D1, D2, D3, D4, D5, D6										
Peak reverse recovery current	I _{RRM}					Tj=25°C		15		А
		-				Tj=125°C		24		
Reverse recovery time	t _{rr}					Ti=125°C		- 34 - 49		ns
	0		0/10	700		Ti=25°C		0.2		0
Reverse recovered charge	Qrr	Rgon=4 Ω	-8/16	700	16	Tj=125°C		0,3		μΟ
Peak rate of fall of recovery current	di(rec)max					Tj=25°C		2741		A/us
	/dt					Tj=125°C		3343		Αγμο
Reverse recovery energy	Erec					Tj=25°C Ti=125°C		0,04		mWs
C1, C2, C3		-		-	<u>.</u>					-
C value	С							47		nF
Thermistor										
Rated resistance	R					T=25°C		22000		Ω
Deviation of R100	ΔR/R	R100=1486 Ω				T=100°C	-5		5	%
Power dissipation	Р					T=25°C		200		mW
Power dissipation constant						T=25°C		2		mW/K
B-value	B(25/50)	Tol. ±3%				T=25°C		3950		К
B-value	B(25/100)	Tol. ±3%				T=25°C		3996		к
Vincotech NTC Reference									В	
				1		1				

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	-5/16	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Figure 3

Typical reverse recovery energy loss as a function of drain current

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	-5/16	V
$I_D =$	16	Α

Figure 4			D	1, D2, D3, D4	4, D5, D6 F\	٧D
Typical re	verse rec	overy energ	y loss			
as a funct	tion of gat	e resistor				
$E_{rec} = f(R_G)$.)					
0,10 (SM W) 3 0,08			E _{rec Low 1}		I I I Erec High T	
0,06	 				 	
0,04	 				 	
0,02	· — — — — 		 	 	 ┿ 	
0.00					1	

16

24

32

 $\boldsymbol{R}_{G}(\boldsymbol{\varOmega})$ 40

With an inductive load at $T_j =$ 25/125 °C V $V_{DS} =$ 700 -5/16 $V_{GS} =$ V $I_{\rm D}$

8

0

=	16	A

with an inductive load at				
$T_j =$	125	°C		
V _{DS} =	700	V		
$V_{GS} =$	-5/16	V		
$R_{gon} =$	4	Ω		
$R_{goff} =$	4	Ω		

Figure 7

Typical reverse recovery time as a

function of drain current

With an inductive load at

$T_j =$	125	°C
V _{DS} =	700	V
V _{GS} =	-5/16	V
I _D =	16	А

Figure 8

Typical reverse recovery time as a

function of MOSFET turn on gate resistor

 $V_{GS} =$

Figure 9

D1, D2, D3, D4, D5, D6

Typical reverse recovery charge as a function of drain current

 $Q_{rr} = f(I_D)$

Figure 11

Typical reverse recovery current as a function of drain current

 $I_{RRM} = f(I_D)$

Figure 10 D1, D2, D3, D4, D5, D6 FWD

Typical reverse recovery charge as a

function of MOSFET turn on gate resistor

 $Q_{rr} = f(R_{gon})$

Figure 12D1, D2, D3, D4, D5, D6 FWDTypical reverse recovery current as a

function of MOSFET turn on gate resistor

 $I_{RRM} = f(R_{gon})$

 $V_{GS} =$

-5/16

V

 $I_D = f(V_{DS})$ -2 0 2 4 8 10 ${}^{12}_{V_{DS}} \left(V \right)^{14}$ 6 250 μs °C 125 -4 V to 20 V in steps of 2 V

Figure 3 Typical transfer characteristics

Vincotech

a function of forward voltage

250 μs

Vincotech

With an inductive load at

$T_j =$	25/126	°C
$V_{DS} =$	700	V
$V_{GS} =$	16/-8	V
$R_{gon} =$	4	Ω

With an inductive load at

$T_j =$	25/126	°C
$V_{DS} =$	700	V
$V_{GS} =$	16/-8	V
$I_D =$	16	Α

Figure 8	D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery energy loss	

as a function of gate resistor

 $E_{rec} = f(R_G)$

With an inductive load at

T _j =	25/126	°C
V _{DS} =	700	V
V _{GS} =	16/-8	V
I _D =	16	Α

Splitted Configuration

Figure 10

Typical switching times as a function of gate resistor $t = f(R_G)$ ΞΞ $t(\mu s)$ 0.1 ‡∃∃∃∃ ± t_{doff} = t_f 0.01 ∃ tr = Ξ - -_ _ _ _ _ _ _ _ _ 0,001

8

12

0	4	
With an in	ductive loa	d at
$T_j =$	126	°C
V _{DS} =	700	V
V _{GS} =	16/-8	V
I _D =	16	А

4

16

20

 $R_{G}(\boldsymbol{\Omega})$

Typical reverse recovery time as a function of MOSFET turn on gate resistor

 $t_{rr} = f(R_{gon})$

Figure 12

V _R =	700	V
I _F =	16	Α
V _{GS} =	16/-8	V

Typical reverse recovery time as a function of drain current

 $t_{rr} = f(I_D)$

Figure 11

Splitted Configuration

Figure 13 D1, D2, D3, D4, D5,

D1, D2, D3, D4, D5, D6 FWD

Figure 15

Typical reverse recovery current as a

function of drain current

Figure 14 D1, D2, D3, D4, D5, D6 FWD

Typical reverse recovery charge as a

function of MOSFET turn on gate resistor

 $Q_{rr} = f(R_{gon})$

Figure 16 D1, D2, D3, D4, D5, D6 FWD Typical reverse recovery current as a

function of MOSFET turn on gate resistor

 $I_{RRM} = f(R_{gon})$

Splitted Configuration

Vincotech

MOSFET thermal model values

R (K/W)	Tau (s)
0,12	1,7E+00
0,33	2,5E-01
1,01	7,6E-02
0,19	5,1E-03
0.14	6.5E-04

R_{thJH} = 2,81 K/W

FWD thermal model values

R (K/W)	Tau (s)
0,08	2,3E+00
0,21	3,3E-01
1,43	6,8E-02
0,71	1,2E-02
0,33	2,4E-03
0,05	5,2E-04

T1, T2, T3, T4, T5, T6 / D1, D2, D3, D4, D5, D6

Forward current as a

function of heatsink temperature

 $I_F = f(T_h)$

T1, T2, T3, T4, T5, T6

Vincotech

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	16	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Figure 3

Typical reverse recovery energy loss

as a function of drain current $\int_{-\infty}^{\infty} \frac{f(1, x)}{f(1, x)}$

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	16	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	16	V
$I_D =$	16	А

Figure 4	D1, D2, D3, D4, D5, D6 FW	D
Typical reverse recovery energy loss		

as a function of gate resistor

 $E_{rec} = f(R_G)$

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	700	V
$V_{GS} =$	16	V
$I_D =$	16	Α

Booster Configuration

With an inductive load at

T _j =	125	°C
V _{DS} =	700	V
V _{GS} =	16	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Figure 7

D1, D2, D3, D4, D5, D6 FWD

Typical reverse recovery time as a

function of drain current

With an inductive load at

$T_j =$	125	°C
V _{DS} =	700	V
V _{GS} =	16	V
I _C =	16	Α

5.4	-	B 0	D (-	EL AVE
1)1	1)2	103	1)4	105	106	+VVI
	U L ,	20,		20,		

Typical reverse recovery time as a

function of MOSFET turn on gate resistor

 $t_{rr} = f(R_{gon})$

Figure 8

 $V_{GS} =$

16

V

Booster Configuration

Vincotech

Figure 11 Typical reverse recovery current as a function of drain current

 $I_{RRM} = f(I_D)$

Figure 10 D1, D2, D3, D4, D5, D6 FWD

Typical reverse recovery charge as a

function of MOSFET turn on gate resistor

$Q_{rr} = f(R_{gon})$

Figure 12	D1, D2, D3, D4, D5, D6 FWD
Typical reverse recovery current as a	

function of MOSFET turn on gate resistor

V

 $I_{RRM} = f(R_{gon})$

16

Vgs=

V

 $V_{GS} =$

16

Booster Configuration

Thermistor

Switching Definitions Half Bridge Configuration

3,04

Switching Definitions Half Bridge Configuration

Switching Definitions Half Bridge Configuration

Measurement circuit

Figure 10

Half Bridge Configuration switching measurement circuit

Switching Definitions Splitted Configuration

 Figure 2
 T1, T2, T3, T4, T5, T6 MOSFET

 Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

 (t_{Eon} = integrating time for E_{on})

 Figure 4
 T1, T2, T3, T4, T5, T6 MOSFET

 Turn-on Switching Waveforms & definition of t_r

Switching Definitions Splitted Configuration

Switching Definitions Splitted Configuration

Measurement circuit

Switching Definitions Booster Configuration

 Figure 2
 T1, T2, T3, T4, T5, T6 MOSFET

 Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

 (t_{Eon} = integrating time for E_{on})

Figure 4 T1, T2, T3, T4, T5, T6 MOSFET Turn-on Switching Waveforms & definition of t_r

 Figure 3
 T1, T2, T3, T4, T5, T6 MOSFET

 Turn-off Switching Waveforms & definition of t_f

Switching Definitions Booster Configuration

Switching Definitions Booster Configuration

Measurement circuit

Ordering Code and Marking - Outline - Pinout

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vincotech(威科)