

EMIPAK 2B PressFit Power Module 3-Levels Half Bridge Inverter Stage, 150 A

EMIPAK 2B (package example)

PRIMARY CHARACTERISTICS						
Q1 - Q4 IGBT STAGE						
V _{CES} 650 V						
V _{CE(on)} typical at I _C = 100 A	1.72 V					
Q2 - Q3 IGBT STAGE						
V _{CES}	650 V					
$V_{CE(on)}$ typical at $I_C = 150 \text{ A}$	1.75 V					
I_C at T_C = 82 °C	150 A					
Speed	8 kHz to 30 kHz					
Package	EMIPAK 2B					
Circuit configuration	3-levels half bridge inverter stage					

FEATURES

- Trench IGBT technology
- FRED Pt® clamping diodes
- · PressFit pins technology
- Exposed Al₂O₃ substrate with low thermal resistance
- · Short circuit rated
- Square RBSOA
- · Integrated thermistor
- · Low internal inductances
- · Low switching loss
- UL approved file E78996

· PressFit pins locking technology PATENT(S): www.vishay.com/patents

• Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

DESCRIPTION

VS-ETF150Y65U is an integrated solution for a multi level inverter stage in a single package. The EMIPAK 2B package is easy to use thanks to the PressFit pins and the exposed substrate provides improved thermal performance. The optimized layout also helps to minimize stray parameters, allowing for better EMI performance.

PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		UNITS	
Operating junction temperature	TJ		175	°C	
Storage temperature range	T _{Stg}		-40 to +150	-0	
RMS isolation voltage	V _{ISOL}	T _J = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s	3500	V	
Q1 - Q4 IGBT	•				
Collector to emitter voltage	V _{CES}		650	V	
Gate to emitter voltage	V _{GES}		20	V	
Pulsed collector current	I _{CM}		220	Α	
Clamped inductive load current	I _{LM} ⁽¹⁾		220	А	
		T _C = 25 °C	142		
Continuous collector current	I _C	T _C = 60 °C	121	Α	
		T _{SINK} = 60 °C	64	1	
Davier dissination	В	T _C = 25 °C	417	W	
Power dissipation P _D		T _C = 60 °C	319	VV	

PATENT(S): www.vishay.com/patents

This Vishay product is protected by one or more United States and International patents.

Vishay Semiconductors

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Q2 - Q3 IGBT	'			!
Collector to emitter voltage	V _{CES}		650	V
Gate to emitter voltage	V _{GES}		20	7 v
Pulsed collector current	I _{CM}		300	- A
Clamped inductive load current	I _{LM} ⁽¹⁾		300	
		T _C = 25 °C	201	
Continuous collector current	I _C	T _C = 60 °C	171	A
		T _{SINK} = 60 °C	77	
Davier dissination	Б	T _C = 25 °C	600	w
Power dissipation	P _D	T _C = 60 °C	460	
D5 - D6 CLAMPING DIODE				
Repetitive peak reverse voltage	V _{RRM}		650	V
Single pulse forward current	I _{FSM}	10 ms sine or 6 ms rectangular pulse, T _J = 25 °C	380	
		T _C = 25 °C	95	A
Diode continuous forward current	I _F	T _C = 60 °C	80	7 ^
		T _{SINK} = 60 °C	45	
Davier dissination	Б	T _C = 25 °C	221	w
Power dissipation	P _D	T _C = 60 °C	169	7 vv
D1 - D2 - D3 - D4 AP DIODE				•
Single pulse forward current	I _{FSM}	10 ms sine or 6 ms rectangular pulse, T _J = 25 °C	250	
		T _C = 25 °C	78	Ī ,
Diode continuous forward current	I _F	T _C = 60 °C	66	A
		T _{SINK} = 60 °C	43	
Down discipation		T _C = 25 °C	176	١٨,
Power dissipation	P _D	T _C = 60 °C	135	W

Notes

· Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur

 $^{^{(1)}}$ V_{CC} = 325 V, V_{GE} = 15 V, L = 500 $\mu H,~R_g$ = 4.7 $\Omega,~T_J$ = 175 $^{\circ}C$

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Q1 - Q4 IGBT						
Collector to emitter breakdown voltage	BV _{CES}	V _{GE} = 0 V, I _C = 100 μA	650	-	-	
Callactor to amittar valtage	\/	V _{GE} = 15 V, I _C = 100 A	-	1.72	2.06	v
Collector to emitter voltage	$V_{CE(on)}$	V _{GE} = 15 V, I _C = 100 A, T _J = 125 °C	-	1.94	-]
Gate threshold voltage	$V_{GE(th)}$	$V_{CE} = V_{GE}$, $I_C = 3.3$ mA	5.0	6.3	8.4	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	V _{CE} = V _{GE} , I _C = 1 mA (25 °C to 125 °C)	-	-19	-	mV/°C
Forward transconductance	9 _{fe}	V _{CE} = 20 V, I _C = 100 A	-	71	-	S
Transfer characteristics	V_{GE}	V _{CE} = 20 V, I _C = 100 A	-	10.5	-	V
Zero gate voltage collector current I _{CES}	V _{GE} = 0 V, V _{CE} = 650 V	-	0.2	100		
	V _{GE} = 0 V, V _{CE} = 650 V, T _J = 125 °C	-	60	-	μA	
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}, V_{CE} = 0 \text{ V}$	-	-	± 600	nA

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Q2 - Q3 IGBT	•						
Collector to emitter breakdown voltage	BV _{CES}	V _{GE} = 0 V, I _C = 100 μA	650	-	-		
0.11	$V_{CE(on)}$ $V_{GE} = 15 \text{ V}, I_C = 150 \text{ A}$ $V_{GE} = 15 \text{ V}, I_C = 150 \text{ A}, T_J = 125 ^{\circ}\text{C}$	-	1.75	2.17] ,		
Collector to emitter voltage		-	1.99	-]		
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 5.0 \text{ mA}$	5.0	5.9	8.4		
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}, I_{C} = 1.0 \text{ mA } (25 \text{ °C to } 125 \text{ °C})$	-	-19	-	mV/°C	
Forward transconductance	9 _{fe}	V _{CE} = 20 V, I _C = 150 A	-	102	-	S	
Transfer characteristics	V_{GE}	V _{CE} = 20 V, I _C = 150 A	-	9.8	-	V	
Zero gate voltage collector current I _{CES}	V _{GE} = 0 V, V _{CE} = 650 V	-	0.2	100			
	ICES	V _{GE} = 0 V, V _{CE} = 650 V, T _J = 125 °C	-	100	-	μA	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V, V _{CE} = 0 V	-	-	± 600	nA	
D5 - D6 CLAMPING DIODE				•			
Cathode to anode blocking voltage	V_{BR}	I _{R =} 100 μA	650	-	-		
Converd voltage drep	V	I _F = 100 A	-	2.3	3.15	V	
Forward voltage drop	V_{FM}	I _F = 100 A, T _J = 125 °C	-	1.6	-		
Developed legisters of minority		V _R = 650 V	-	0.2	75		
Reverse leakage current	I _{RM}	V _R = 650 V, T _J = 125 °C	-	110	-	μA	
D1 - D2 - D3 - D4 AP DIODE	•			•			
Forward voltage drep	V	I _F = 100 A	-	2.14	3.18		
Forward voltage drop	rop V_{FM} $I_F = 100 \text{ A}, T_J = 125 °C$	I _F = 100 A, T _J = 125 °C	-	1.79	-	V	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Q1 - Q4 IGBT (WITH D5 - D6 CLAMF	ING DIODE)					
Total gate charge (turn-on)	Qg	I _C = 100 A	-	190	-	
Gate to emitter charge (turn-on)	Q _{ge}	V _{CC} = 400 V	-	65	-	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	80	-	
Turn-on switching loss	E _{on}		-	0.43	-	
Turn-off switching loss	E _{off}	1, 100 4	-	1.04	-	mJ
Total switching loss	E _{tot}	$I_C = 100 \text{ A}$ $V_{CC} = 325 \text{ V}$	-	1.47	-	
Turn-on delay time	t _{d(on)}	V _{GE} = 15 V	-	113	-	
Rise time	t _r	$R_g = 4.7 \Omega$ L = 500 µH (1)	-	50	-	- ns
Turn-off delay time	t _{d(off)}		-	108	-	
Fall time	t _f		-	57	-	
Turn-on switching loss	E _{on}		-	0.61	-	
Turn-off switching loss	E _{off}	$I_{C} = 100 \text{ A}$ $V_{CC} = 325 \text{ V}$ $V_{GE} = 15 \text{ V}$ $R_{g} = 4.7 \Omega$ $L = 500 \mu\text{H}$ $T_{J} = 125 \text{ °C} (1)$	-	1.49	-	mJ
Total switching loss	E _{tot}		-	2.1	-	
Turn-on delay time	t _{d(on)}		-	113	-	
Rise time	t _r		-	51	-	
Turn-off delay time	t _{d(off)}		-	117	-	ns
Fall time	t _f		-	79	-	
Input capacitance	C _{ies}	V _{GE} = 0 V	-	6600		
Output capacitance	C _{oes}	V _{CC} = 30 V	-	340		pF
Reverse transfer capacitance	C _{res}	f = 1 MHz	-	180		
Reverse bias safe operating area	RBSOA	$T_J = 175 ^{\circ}\text{C}, I_C = 220 \text{A}$ $V_{CC} = 325 \text{V}, V_P = 650 \text{V}$ $R_g = 4.7 \Omega, V_{GE} = 15 \text{V} \text{ to } 0 \text{V}$	Fullsquare			
Short circuit safe operating area	SCSOA	$R_g = 5.0 \Omega$, $V_{CC} = 400 V$, $V_P = 600 V$ $V_{GE} = 15 V$ to 0, $T_J = 150 ^{\circ}C$	-	-	5.5	μs

Vishay Semiconductors

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Q2 - Q3 IGBT (WITH D2 - D3 AP DIO	DE)		!	!		
Total gate charge (turn-on)	Qg	I _C = 150 A	-	310	-	
Gate to emitter charge (turn-on)	Q _{ge}	V _{CC} = 400 V	-	95	-	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	130	-	1
Turn-on switching loss	E _{on}		-	0.49	-	
Turn-off switching loss	E _{off}	1	-	2.51	-	mJ
Total switching loss	E _{tot}	$I_C = 150 \text{ A}$ $V_{CC} = 325 \text{ V}$	-	3.0	-	1
Turn-on delay time	t _{d(on)}	V _{GE} = 15 V	-	162	-	
Rise time	t _r	$R_g = 4.7 \Omega$	-	71	-	1
Turn-off delay time	t _{d(off)}	L = 500 μH ⁽¹⁾	-	148	-	ns
Fall time	t _f		-	64	-	1
Turn-on switching loss	E _{on}		-	0.62	-	
Turn-off switching loss	E _{off}	I _C = 150 A	-	3.18	-	mJ
Total switching loss	E _{tot}	V _{CC} = 325 V	-	3.8	-	1
Turn-on delay time	t _{d(on)}	$V_{GE} = 15 \text{ V}$	-	162	-	
Rise time	t _r	L = 500 µH -	-	75	-	1
Turn-off delay time	t _{d(off)}		153	_	ns	
Fall time	t _f	1	-	81	_	-
Input capacitance	C _{ies}	V _{GE} = 0 V	-	9900	-	
Output capacitance	C _{oes}	V _{GE} = 0 V	-	460	-	pF
Reverse transfer capacitance	C _{res}	f = 1 MHz	-	250	_	1
Reverse bias safe operating area	RBSOA	$T_J = 175 ^{\circ}\text{C}, I_C = 300 \text{A}$ $V_{CC} = 325 \text{V}, V_P = 650 \text{V}$ $R_g = 4.7 \Omega, V_{GE} = 15 \text{V} \text{ to } 0 \text{V}$	Fullsquare)	
Short circuit safe operating area	SCSOA	$R_g = 5.0 \ \Omega, \ V_{CC} = 400 \ V, \ V_P = 600 \ V$ $V_{GE} = 15 \ V \ to \ 0, \ T_J = 150 \ ^{\circ}C$	-	-	5.5	μs
D5 - D6 CLAMPING DIODE	•					
Diode reverse recovery time	t _{rr}	V _R = 200 V	-	55	-	ns
Diode peak reverse current	I _{rr}	I _F = 50 A	-	8.7	-	Α
Diode recovery charge	Q _{rr}	dl/dt = 500 A/µs	-	242	-	nC
Diode reverse recovery time	t _{rr}	V _R = 200 V	-	112	-	ns
Diode peak reverse current	I _{rr}	I _F = 50 A	-	21	-	Α
Diode recovery charge	Q _{rr}	dl/dt = 500 A/μs, T _J = 125 °C	-	1177	-	nC
D1 - D2 - D3 - D4 AP DIODE	•	•	•	•	•	
Diode reverse recovery time	t _{rr}	V _R = 200 V	-	66	-	ns
Diode peak reverse current	I _{rr}	$I_{F} = 50 \text{ A}$	-	11	-	А
Diode recovery charge	Q _{rr}	dl/dt = 500 A/µs	-	363	-	nC
Diode reverse recovery time	t _{rr}	V _R = 200 V	-	130	-	ns
Diode peak reverse current	I _{rr}	$I_F = 50 \text{ A}$	-	21.3	-	Α
Diode recovery charge	Q _{rr}	dl/dt = 500 A/µs, T _J = 125 °C	-	1392	-	nC

Note

⁽¹⁾ Energy losses include "tail" and diode reverse recovery

INTERNAL NTC - THERMISTOR SPECIFICATIONS						
PARAMETER SYMBOL TEST CONDITIONS		VALUE	UNITS			
Resistance	R25	T _C = 25 °C	5000	0		
R100 T ₀		T _C = 100 °C	493 ± 5 %	Ω		
B-value	B _{25/50}	$R_2 = R_{25} \exp \left[B_{25/50} \left(1/T_2 - 1/(298.15 \text{ K}) \right) \right]$	3375 ± 5 %	К		
Maximum operating temperature			220	°C		
Dissipation constant			2	mW/°C		
Thermal time constant			8	S		

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Q1 - Q4 IGBT - junction to case thermal resistance (per switch)		-	-	0.36	
Q2 - Q3 IGBT - junction to case thermal resistance (per switch)		-	-	0.25	
D5 - D6 clamping diode - junction to case thermal resistance (per diode)	- R _{thJC}	-	-	0.68	
D1 - D2 - D3 - D4 AP diode - junction to case thermal resistance (per diode)	sistance (per diode) 0.85			0.85] ∘c/w
Q1 - Q4 IGBT - case to sink thermal resistance (per switch)		-	0.63	-	C/VV
Q2 - Q3 IGBT - case to sink thermal resistance (per switch)		-	0.62	-	
D5 - D6 clamping diode - case to sink thermal resistance (per diode)		-	1.0	-	
D1 - D2 - D3 - D4 AP diode - case to sink thermal resistance (per diode)		-	0.78	-	
Case to sink thermal resistance per module		-	0.08	-	°C/W
Mounting torque (M4)		2	-	3	Nm
Weight		-	45	-	g

Note

⁽¹⁾ Mounting surface flat, smooth, and greased

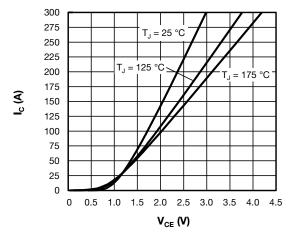


Fig. 1 - $\,$ I_C vs. $\,$ V_{CE}, Typical Q1 - Q4 Trench IGBT Output Characteristics, $\,$ V_{GE} = 15 V

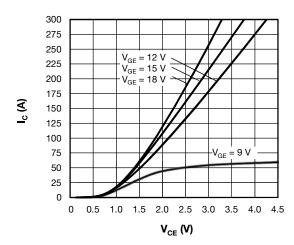


Fig. 2 - I_C vs. V_{CE} Typical Q1 - Q4 Trench IGBT Output Characteristics, T_J = 125 °C

60

40

20 0

> 0 20 40 60

www.vishay.com

180 Allowable Case Temperature (°C) 160 140 120 DC 100 80

80 I_c - Continuous Collector Current (A)

100 120 140 160

Fig. 3 - Allowable Case Temperature vs. Continuous Collector Current, Maximum Q1 - Q4 IGBT Continuous Collector Current vs. Case Temperature

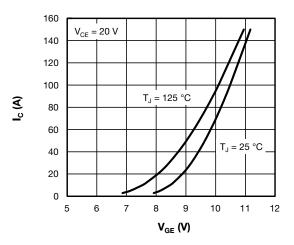
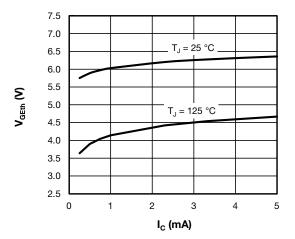



Fig. 4 - I_C vs V_{GE} Typical Q1 - Q4 Trench IGBT Transfer Characteristics

 $\label{eq:Fig.5} Fig.\,5 - V_{GEth} \,\, \text{vs. I}_{C} \\ \text{Typical Q1 - Q4 Trench IGBT Gate Threshold Voltage}$

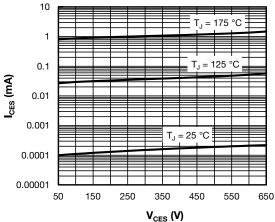


Fig. 6 - I_{CES} vs V_{CES}
Typical Q1 - Q4 Trench IGBT Zero Gate Voltage Collector Current

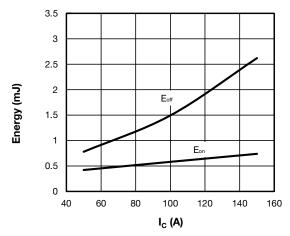


Fig. 7 - Energy Loss vs. I_C (Typical Q1 - Q4 Trench IGBT Energy Loss vs. I_C (with D5 - D6 Clamping Diode)), $T_J = 125 \,^{\circ}\text{C}$, $V_{CC} = 325 \,^{\circ}\text{V}$, $R_g = 4.7 \,^{\circ}\Omega$, $V_{GE} = \pm 15 \text{ V}, L = 500 \mu\text{H}$

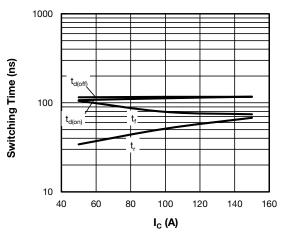


Fig. 8 - Switching Time vs. I_C (Typical Q1 - Q4 Trench IGBT Switching Time vs. I_C (with D5 - D6 Clamping Diode)), $T_J = 125 \,^{\circ}\text{C}$, $V_{CC} = 325 \,^{\circ}\text{V}$, $R_g = 4.7 \,^{\circ}\Omega$, $V_{GE} = \pm 15 \text{ V}, L = 500 \mu\text{H}$

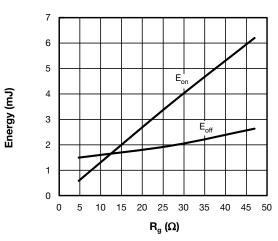


Fig. 9 - Energy Loss vs. R_g (Typical Q1 - Q4 Trench IGBT Energy Loss vs R_g (with D5 - D6 Clamping Diode)), T_J =125 °C, V_{CC} =325 V, I_C =100 A, V_{GE} = ± 15 V, L = 500 μ H

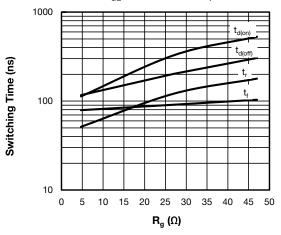


Fig. 10 - Switching Time vs. R_g (Typical Q1 - Q4 Trench IGBT Switching Time vs. R_g (with D5 - D6 Clamping Diode)), T_J = 125 °C, V_{CC} = 325 V, I_C = 100 A, V_{GE} = ± 15 V, L = 500 μ H

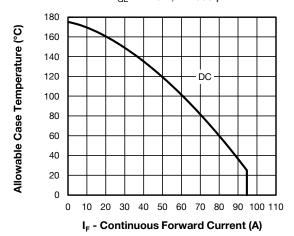
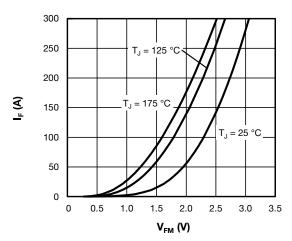
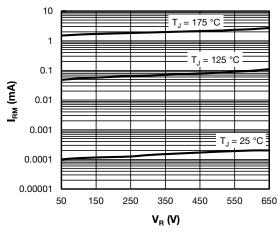
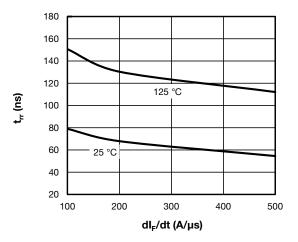
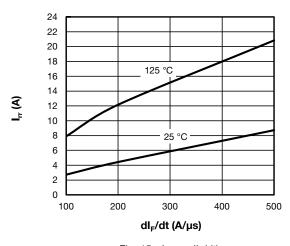
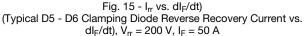


Fig. 11 - Allowable Case Temperature vs. Continuous Collector Current, (Maximum D5 - D6 Diode Continuous Forward Current vs. Case Temperature)


Fig. 12 - I_F vs. V_{FM} (Typical D5 - D6 Clamping Diode Forward Characteristics)



 $\label{eq:Fig. 13 - I_{RM} vs. V_R} Fig. \, 13 - I_{RM} \, vs. \, V_R \\ \text{(Typical D5 - D6 Clamping Diode Reverse Leakage Current)}$

 $Fig.~14 - t_{rr}~vs.~dI_F/dt \\ (Typical~D5 - D6~Clamping~Diode~Reverse~Recovery~Time~vs.~dI_F/dt), \\ V_{rr} = 200~V,~I_F = 50~A$

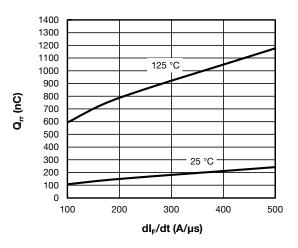


Fig. 16 - Q_{rr} vs. dI_F/dt) (Typical D5 - D6 Clamping Diode Reverse Recovery Charge vs. dI_F/dt)), V_{rr} = 200 V, I_F = 50 A



Fig. 17 - Z_{thJC} vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance Z_{thJC} Characteristics - (Q1 - Q4 Trench IGBT))

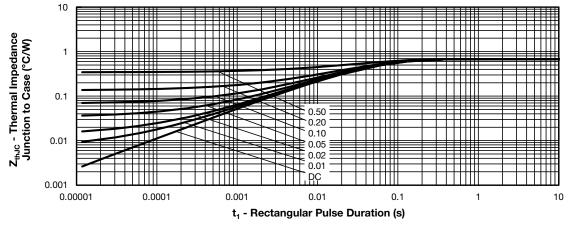


Fig. 18 - Z_{thJC} vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance Z_{thJC} Characteristics - (D5 - D6 Clamping Diode))

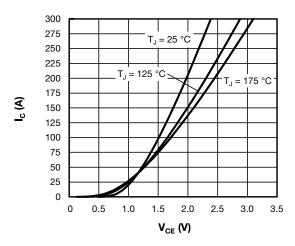


Fig. 19 - $\,$ I $_{\rm C}$ vs. $\rm V_{\rm CE}$ (Typical Q2 - Q3 Trench IGBT Output Characteristics, $\rm V_{\rm GE}$ = 15 V)

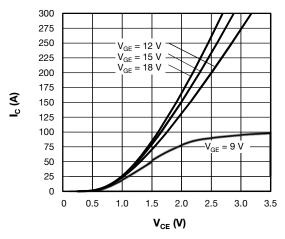


Fig. 20 - I_C vs. V_{CE} (Typical Q2 - Q3 Trench IGBT Output Characteristics, $T_J = 125$ °C)

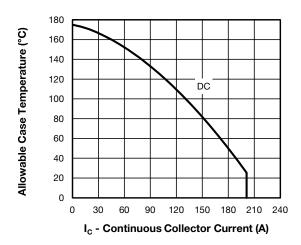
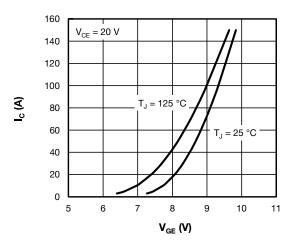



Fig. 21 - Allowable Case Temperature vs. Continuous Collector Current,
(Maximum Q2 - Q3 IGBT Continuous Collector Current vs. Case Temperature)

 $\label{eq:Fig. 22 - I_C vs. V_GE} \ensuremath{\text{Fig. 22 - I}_{\text{C}}} \ensuremath{\text{Vs. V}_{\text{GE}}} \ensuremath{\text{(Typical Q2 - Q3 Trench IGBT Transfer Characteristics)}}$

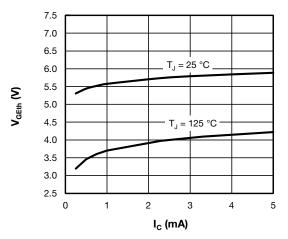


Fig. 23 - V_{GEth} vs. I_{C} (Typical Q2 - Q3 Trench IGBT Gate Threshold Voltage)

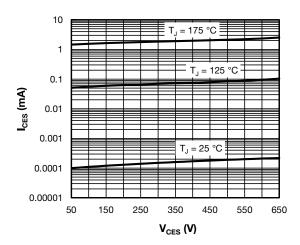


Fig. 24 - I_{CES} vs. V_{CES} (Typical Q2 - Q3 Trench IGBT Zero Gate Voltage Collector Current)

www.vishay.com

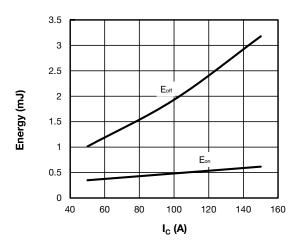


Fig. 25 - Energy Loss vs. I_C (Typical Q2 - Q3 Trench IGBT Energy Loss vs. I_C (with D2 - D3 Antiparallel Diode)), T_J=125 °C, V_{CC}=325 V, R_g=4.7 Ω , V_{GE} = \pm 15 V, L = 500 μ H

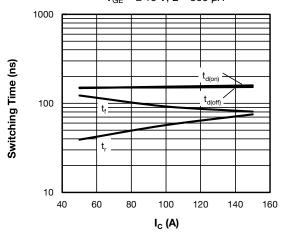


Fig. 26 - Switching Time vs. I_C (Typical Q2 - Q3 Trench IGBT Switching Time vs. I_C (with D2 - D3 Antiparallel Diode)), T_J =125 °C, V_{CC} =325 V, R_g =4.7 Ω , V_{GE} = ± 15 V, L = 500 μ H



Fig. 27 - Energy Loss vs. R_g (Typical Q2 - Q3 Trench IGBT Energy Loss vs. R_g (with D2 - D3 Antiparallel Diode)), T_J=125 °C, V_{CC}=325 V, I_C=150 A, V_{GE} = \pm 15 V, L = 500 μ H

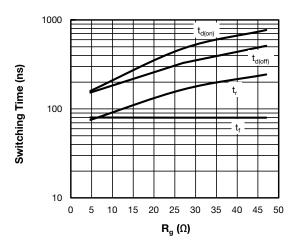


Fig. 28 - Switching Time vs. R_g (Typical Q2 - Q3 Trench IGBT Switching Time vs. R_g (with D2 - D3 Antiparallel Diode)), T_J = 125 °C, V_{CC} = 325 V, I_C = 150 A, V_{GE} = \pm 15 V, L = 500 μ H

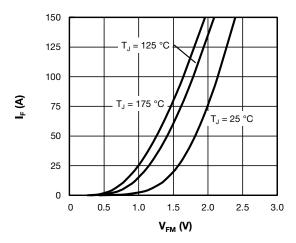


Fig. 29 - I_F vs. V_{FM} (Typical D1 - D2 - D3 - D4 Antiparallel Diode Forward Characteristics)

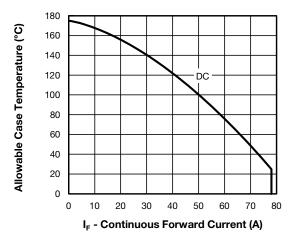
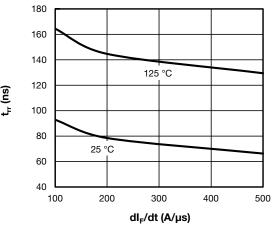
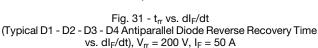




Fig. 30 - Allowable Case Temperature vs. Continuous Collector Current, (Maximum D1- D2 - D3 - D4 Diode Continuous Forward Current vs. Case Temperature)

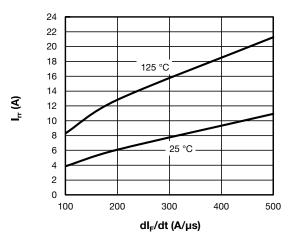


Fig. 32 - I_{rr} vs. dI_F/dt (Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Current vs. dI_F/dt), V_{rr} = 200 V, I_F = 50 A

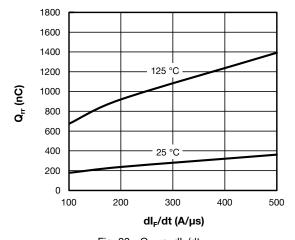


Fig. 33 - Q_{rr} vs. dI_F/dt (Typical D1 - D2 - D3 - D4 Antiparallel Diode Reverse Recovery Charge vs. dI_F/dt), V_{rr} = 200 V, I_F = 50 A

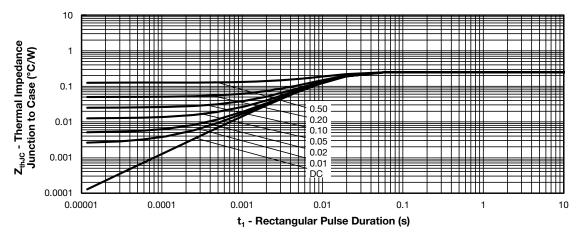


Fig. 34 - ZthJC vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance ZthJC Characteristics - (Q2 - Q3 Trench IGBT))

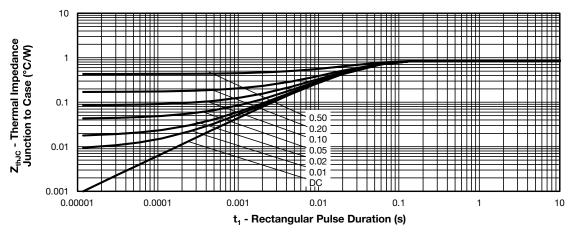
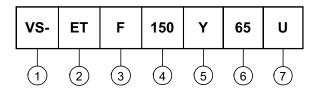
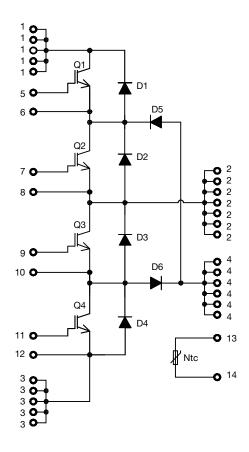
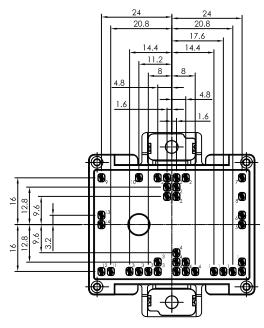



Fig. 35 - Z_{thJC} vs. t1 Rectangular Pulse Duration (Maximum Thermal Impedance Z_{thJC} Characteristics - (D1 - D2 - D3 - D4 Antiparallel Diode))


ORDERING INFORMATION TABLE

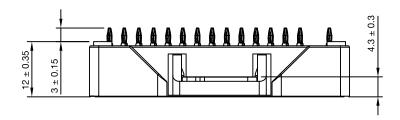
Device code



- 1 Vishay Semiconductors product
- 2 Package indicator (ET = EMIPAK 2B)
- 3 Circuit configuration (F = 3-levels half bridge inverter stage)
- 4 Current rating (150 = 150 A)
- 5 Switch die technology (Y = trench IGBT)
- 6 Voltage rating (65 = 650 V)
- 7 Diode die technology (U = ultrafast diode)

CIRCUIT CONFIGURATION

PACKAGE in millimeters




LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95559				

EMIPAK-2B PressFit

DIMENSIONS in millimeters

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)