Thyristor/Diode and Thyristor/Thyristor, 430 A (SUPER MAGN-A-PAK Power Modules)

www.vishay.com

SUPER MAGN-A-PAK

PRODUCT SUMMARY

FEATURES

- High current capability
- High surge capability
- High voltage ratings up to 2000 V
- \bullet 3000 V_{RMS} isolating voltage with non-toxic substrate
- Industrial standard package
- UL approved file E78996
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Motor starters
- DC motor controls AC motor controls
- Uninterruptible power supplies
- Wind mill

I _{T(AV)}	430 A		
Туре	Modules - Thyristor		
Package	SMAP		
Circuit	Two SCRs doubler circuit		

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
1		430	A		
I _{T(AV)}	T _C	82	°C		
lana an		675	A		
I _{T(RMS)}	T _C	82	°C		
I _{TSM}	50 Hz	15.7	kA		
	60 Hz	16.4	NA		
l ² t	50 Hz	1232	kA ² s		
1-1	60 Hz	1125	KA-S		
l²√t		12 320	kA²√s		
V _{RRM}	Range	1600 to 2000	V		
TJ	Range	- 40 to 150	°C		
T _{Stg}	Range	- 40 to 130			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} MAXIMUM AT T _J = T _J MAXIMUM mA			
	16	1600	1700				
VSK.430	18	1800	1900	100			
	20	2000	2100				

Pb-free

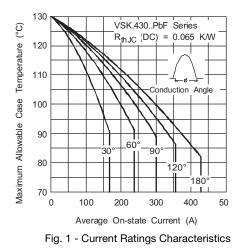
Revision: 20-Aug-13 1 Document Number: 93748 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

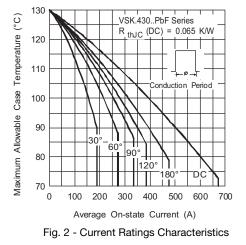
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average on-state current	I _{T(AV),}	180° conduction, half sine wave		430	А	
at case temperature	I _{F(AV)}				82	82 °C
Maximum RMS on-state current	I _{T(RMS)}	180° condu	ction, half sine v	vave at $T_{C} = 82 \text{ °C}$	675	А
		t = 10 ms	No voltage		15.7	kA
Maximum peak, one-cycle,	I _{TSM,}	t = 8.3 ms	reapplied		16.4	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RBM}		13.2	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	13.8	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	1232	kA ² s
		t = 8.3 ms	reapplied		1125	
		t = 10 ms	100 % V _{RRM}		871	
		t = 8.3 ms	reapplied			
Maximum $I^2 \sqrt{t}$ for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied		12 320	kA²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.96	N	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$		1.06	V	
Low level value of on-state slope resistance	r _{f1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.51		
High level value of on-state slope resistance	r _{f2}	$(I > \pi \times I_{T(AV)}), T_J = T_J$ maximum		0.45	mΩ	
Maximum on-state voltage drop	V _{TM}	I_{pk} = 1500 A, T_J = 25 °C, t_p = 10 ms sine pulse		1.65	V	
Maximum forward voltage drop	V _{FM}	I_{pk} = 1500 A, T_J = 25 °C, t_p = 10 ms sine pulse		1.65	V	
Maximum holding current	Ι _Η			500		
Typical latching current	١L	T _J = 25 °C, anode supply 12 V resistive load		1000	mA	

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} = 400$ A, V_{DRM} applied	1000	A/µs	
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/ μ s V _d = 0.67 % V _{DRM} , T _J = 25 °C	2.0	110	
Typical turn-off time	tq	I_{TM} = 750 A, T _J = T _J maximum, dl/dt = - 60 A/µs V _R = 50, dV/dt = 20 V/µs, Gate 0 V 100 Ω	200	μs	

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 130 °C, linear to V_D = 80 % V_{DRM}	1000	V/µs	
RMS insulation voltage	V _{INS}	t = 1 s	3000	V	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	100	mA	

Revision: 20-Aug-13 Document Number: 93748 2 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000




THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction operating temperature range	TJ		- 40 to 130	°C	
Maximum storage temperature range	T _{Stg}		- 40 to 150		
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.065	K/W	
Maximum thermal resistance, case to heatsink	R _{thC-hs}		0.02	N/ VV	
SMAP to heatsin	ĸ	A mounting compound is recommended and	6 to 8		
Mounting torque ± 10 % busbar to SMAI	þ	the torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	12 to 15	Nm	
Approximate weight			1500	g	
Case style		See dimensions - link at the end of datasheet	SUPER MA	GN-A-PAK	

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS	
180°	0.009	0.006			
120°	0.011	0.011			
90°	0.014	0.015	$T_J = T_J$ maximum	K/W	
60°	0.021	0.022			
30°	0.037	0.038			

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

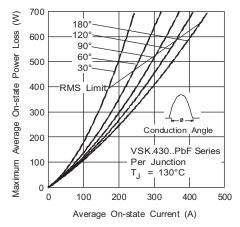


Fig. 3 - On-State Power Loss Characteristics

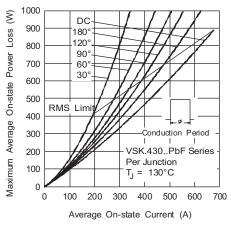


Fig. 4 - On-State Power Loss Characteristics

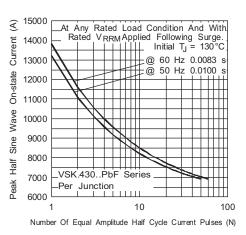


Fig. 5 - Maximum Non-Repetitive Surge Current

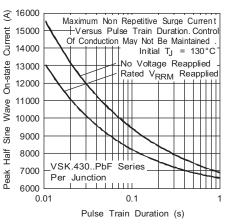


Fig. 6 - Maximum Non-Repetitive Surge Current

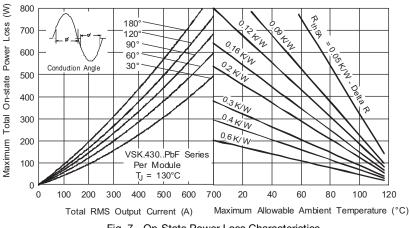
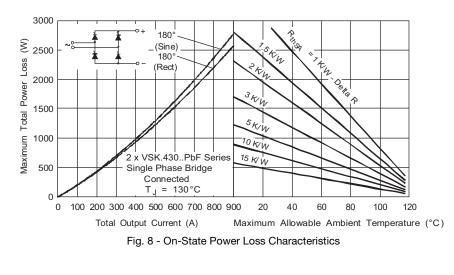



Fig. 7 - On-State Power Loss Characteristics

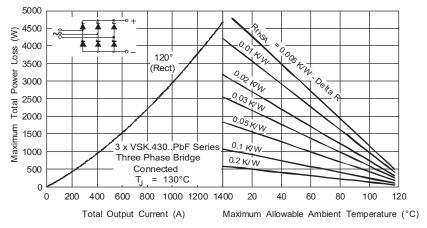


Fig. 9 - On-State Power Loss Characteristics

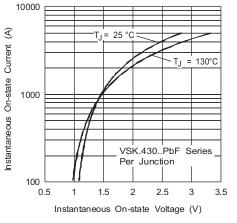
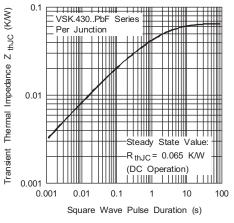
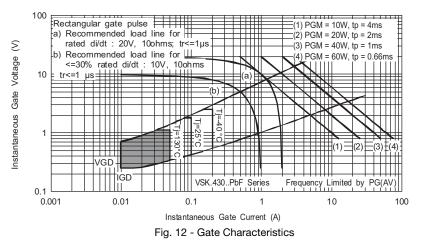
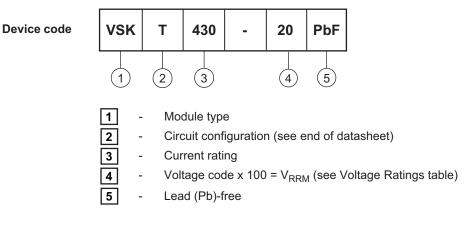


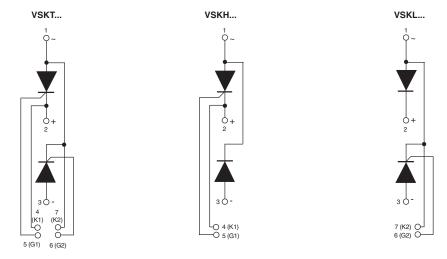
Fig. 10 - On-State Voltage Drop Characteristics


Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

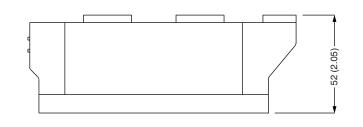
ORDERING INFORMATION TABLE

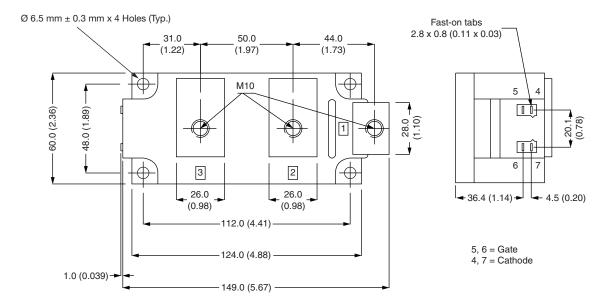

www.vishay.com

Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95283					
Revision: 20-Aug-13	6	Document Number: 93748			
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com					


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

Super MAGN-A-PAK Thyristor/Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)