International IOR Rectifier

MBRD320 MBRD330 MBRD340

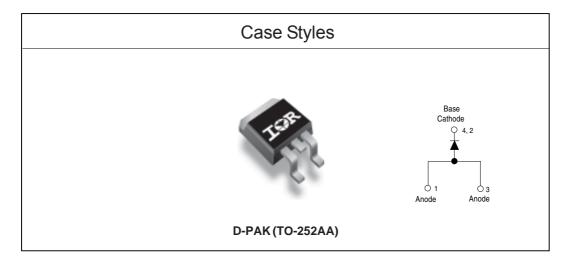
SCHOTTKY RECTIFIER

3.0 Amp

$$I_{F(AV)} = 3.0 Amp$$

 $V_R = 20/40 V$

Major Ratings and Characteristics


Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	20/40	V
I _{FSM} @tp=5μssine	490	А
V _F @3 Apk, T _J = 125°C	0.49	٧
T _J	-40 to 150	°C

Description/ Features

The MBRD320, MBRD330, MBRD340 surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and re-

verse battery protection.

- Popular D-PAK outline
- Small foot print, surface mountable
- · Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term

Document Number: 93462

www.vishay.com

MBRD320, MBRD330, MBRD340

Bulletin PD-20756 rev. F 05/06

Voltage Ratings

	Part number	MBRD320	MBRD330	MBRD340
V _R	Max. DC Reverse Voltage (V)	20	30	40
V _{RWI}	ո Max. Working Peak Reverse Voltage (V)			

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 133°C, r	ectangular waveform
I _{FSM}	Max. Peak One Cycle Non-Repetitive	490		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	75		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	8.0	mJ	T _J =25 °C, I _{AS} = 1Amp, L = 16mH	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_{J} max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditions		
V _{FM}	Max. Forward Voltage Drop (1)	0.48	0.6	V	@ 3A	T = 25 °C	
	See Fig. 1	0.58	0.7	V	@ 6A	$T_J = 25 ^{\circ}\text{C}$	
		0.41	0.49	V	@ 3A	T 405.00	
		0.55	0.625	V	@ 6A	$T_J = 125 ^{\circ}C$	
I _{RM}	Max. Reverse Leakage Current (1)	0.02	0.2	mA	T _J = 25 °C	\\t\\	
	See Fig. 2	10.7	20	mA	T _J = 125 °C	$V_R = rated V_R$	
C _T	Typical Junction Capacitance	189	-	pF	V _R = 5V _{DC} (test signal range 100kHz to		
					1Mhz), @ 25°C		
L _S	Typical Series Inductance	5.0	-	nΗ	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)		

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 175	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case	6.0	°C/W	DC operation *See Fig. 4
R _{thJA}	Max. Thermal Resistance Junction	80	°C/W	
	to Ambient			
wt	Approximate Weight	0.3 (0.01)	g (oz.)	
	Case Style	D-PAK		Similar to TO-252AA
	Device Marking	MBRD340		

thermal runaway condition for a diode on its own heatsink

Bulletin PD-20756 rev. F 05/06

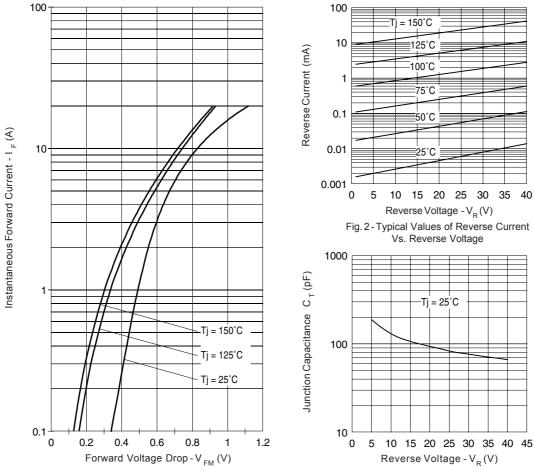


Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

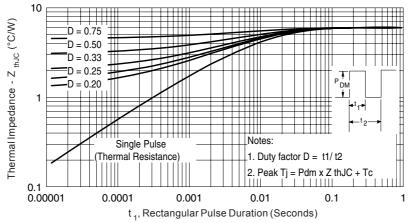


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

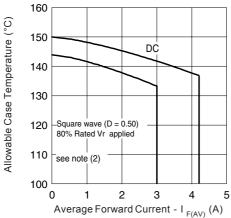


Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

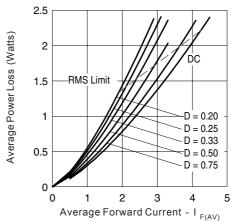
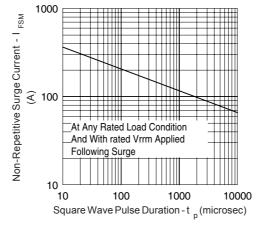
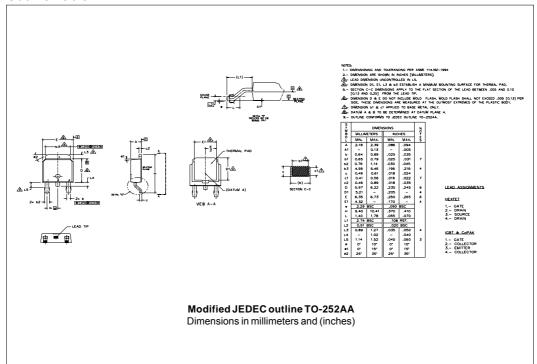
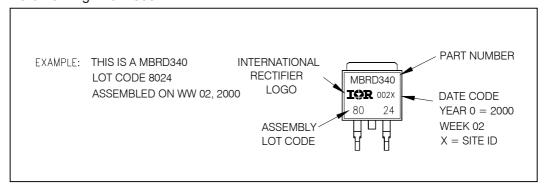
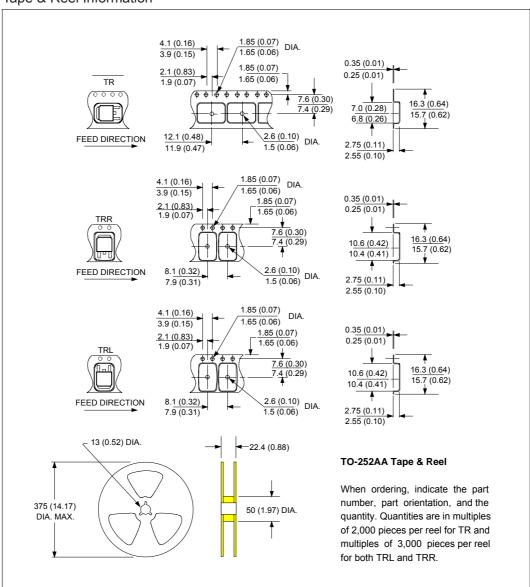


Fig. 6-Forward Power Loss Characteristics

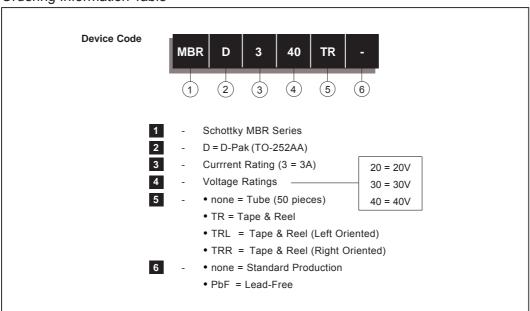




Fig. 7 - Maximum Non-Repetitive Surge Current

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) x R_{thJC};$ \\ & Pd = Forward Power Loss = $I_{F(AV)} x V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6);$ \\ & Pd_{REV} = Inverse Power Loss = $V_{R1} x I_R (1 - D); I_R @ V_{R1} = 80\%$ rated V_R \\ \end{tabular}$


Outline Table

Part Marking Information



Tape & Reel Information

Ordering Information Table

Document Number: 93462

Data and specifications subject to change without notice. This product has been designed and qualified for AEC Q101 Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

www.vishay.com

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 99901 www.vishay.com
Revision: 08-Mar-07 1

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)