

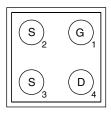
P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^{a, e}	Q _g (Typ.)			
- 20	0.104 at V _{GS} = - 4.5 V	- 3.8	6 nC			
	0.148 at V _{GS} = - 2.5 V	- 3.2	OTIC			

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- Compliant to RoHS Directive 2002/95/EC

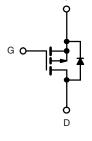
ROHS COMPLIANT


FREE

APPLICATIONS

- Load Switches, Battery Switches and Charger Switches in Portable Device Applications
- DC/DC Converters

MICRO FOOT


Bump Side View

Device Marking: 8465

xxx = Date/Lot Traceability Code

Ordering Information: Si8465DB-T2-E1 (Lead (Pb)-free and Halogen-free)

P-Channel MOSFET

260

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	- 20	V	
Gate-Source Voltage	V _{GS}	± 12	V	
	T _A = 25 °C		- 3.8 ^a	
Continuous Prais Current /T 150 °C)	T _A = 70 °C		- 3 ^a	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	- 2.5 ^b	
	T _A = 70 °C		- 2.0 ^b	A
Pulsed Drain Current		I _{DM}	- 15	
Continuous Source-Drain Diode Current	T _C = 25 °C		- 1.5 ^a	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 0.65 ^b	
	T _A = 25 °C		1.8 ^a	
Mayimum Dawar Dissination	T _A = 70 °C	Б	1.1 ^a	w
Maximum Power Dissipation	T _A = 25 °C	P _D	0.78 ^b	vv
	T _A = 70 °C		0.5 ^b	
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to 150		
Package Pollow Conditions ^C	VPR		260	°C
Package Reflow Conditions ^c	IB/Convection		260	

Notes:

- a. Surface mounted on 1" x 1" FR4 board with full copper, t = 10 s.
- b. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 10 s.
- c. Refer to IPC/JEDEC (J-STD-020C), no manual or hand soldering.
- d. In this document, any reference to case represents the body of the MICRO FOOT device and foot is the bump.

IR/Convection

e. Based on $T_A = 25$ °C.

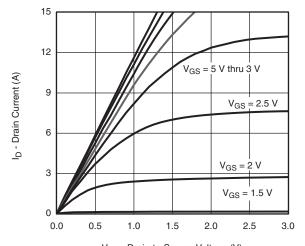
THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{a, b}	t = 10 s	D	55	70	°C/W		
Maximum Junction-to-Ambient ^{c, d}	t = 10 s	R _{thJA}	125	160	O/ VV		

Notes:

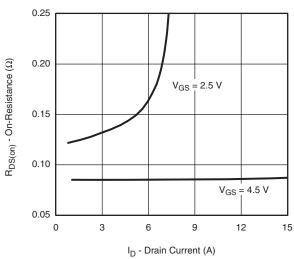
- a. Surface mounted on 1" x 1" FR4 board with full copper.
- b. Maximum under steady state conditions is 100 °C/W.
- c. Surface mounted on 1" x 1" FR4 board with minimum copper.
- d. Maximum under steady state conditions is 190 °C/W.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static	,						
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = - 250 μA	- 20			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$			- 12		>//06	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = - 250 μA		2.8		mV/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.6		- 1.5	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70 \text{ °C}$			- 1 - 10	μΑ	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 10			Α	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -4.5 \text{ V, } I_D = -1.5 \text{ A}$ $V_{GS} = -2.5 \text{ V, } I_D = -1.5 \text{ A}$		0.086 0.122	0.104 0.148	Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 1.5 A		7		S	
Dynamic ^b	015	D3 / D					
Input Capacitance	C _{iss}			450			
Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		125		pF	
Reverse Transfer Capacitance	C _{rss}	30		95			
Total Gate Charge	Q _g	V _{DS} = - 10 V, V _{GS} = - 10 V, I _D = - 1 A		12	18	nC	
0-1- 0	, ,	4577		6	9		
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = 1 \text{ A}$		0.85			
Gate-Drain Charge Gate Resistance	Q _{gd}	V _{GS} = - 0.1 V, f = 1 MHz		2.2 7.5			
Turn-On Delay Time	R _g	V _{GS} = - 0.1 V, I = 1 IVIH2		20	30	Ω	
Rise Time	t _{d(on)}	V 40 V B 40 C		20	30	ns	
Turn-Off Delay Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 10 \Omega$ $I_D \cong -1 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_q = 1 \Omega$,	25	40		
Fall Time	t _{d(off)}	1D = 171, VGEN = 4.5 V, Ng = 132		10	15		
Turn-On Delay Time				7	15		
Rise Time	t _{d(on)}	$V_{DD} = -10 \text{ V, R}_{L} = 10 \Omega$		10	15		
Turn-Off Delay Time	t _{d(off)}	$I_{D} \cong -10 \text{ V}, R_{I} = 10 \Omega$ $I_{D} \cong -1 \text{ A}, V_{GEN} = -10 \text{ V}, R_{I} = 1 \Omega$		25	40		
Fall Time	t _f	10 = 115 1GEN 15 15 15 15		10	15		
Drain-Source Body Diode Characteris	· · · · · · · · · · · · · · · · · · ·						
Continuous Source-Drain Diode	_	-					
Current	l _S	T _A = 25 °C			- 1.5	Α	
Pulse Diode Forward Current	I _{SM}				- 15		
Body Diode Voltage	V_{SD}	I _S = - 1 A, V _{GS} = 0 V		- 0.8	- 1.2	V	
Body Diode Reverse Recovery Time	t _{rr}			20	40	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	L = 1 A dl/dt = 100 A/up T = 05 °C		10	20	nC	
Reverse Recovery Fall Time	t _a	$I_F = -1 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$		10		ns	
Reverse Recovery Rise Time	t _b			10			

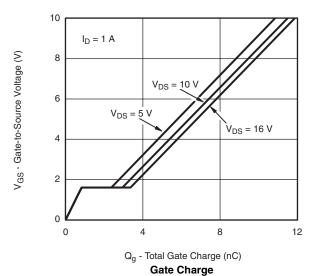
Notes:

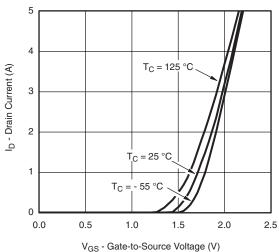

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

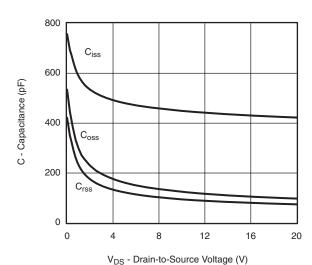


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

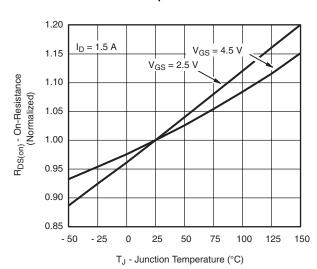



 V_{DS} - Drain-to-Source Voltage (V)

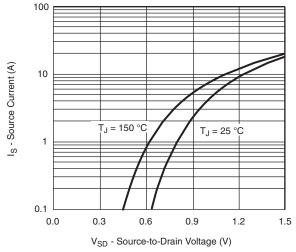
Output Characteristics

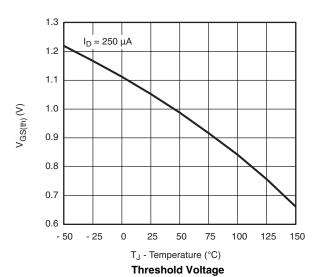


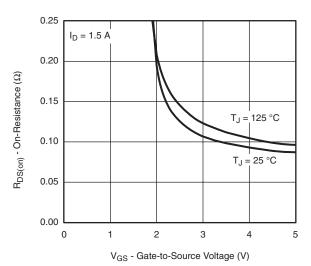
On-Resistance vs. Drain Current and Gate Voltage



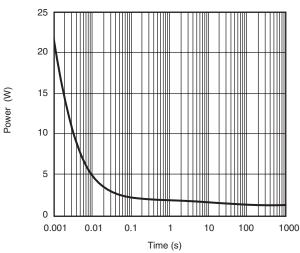
Transfer Characteristics


Capacitance

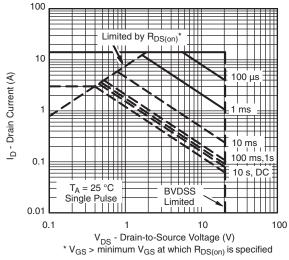

On-Resistance vs. Junction Temperature


VISHAY

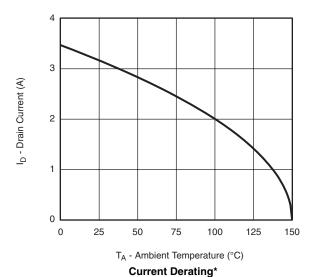
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

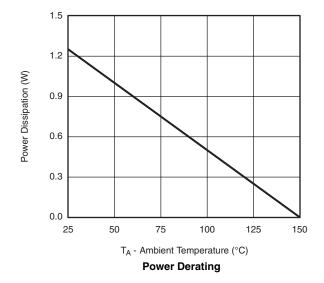


Source-Drain Diode Forward Voltage



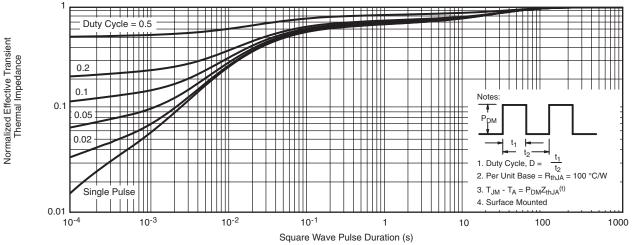
On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient

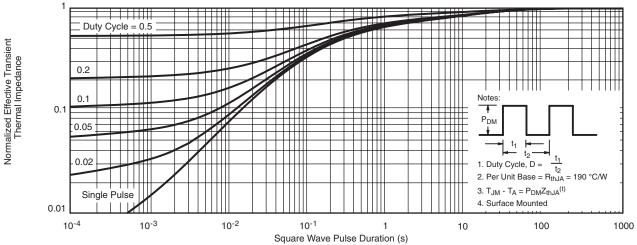


Safe Operating Area, Junction-to-Ambient

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


Note:

When Mounted on 1" x 1" FR4 with Full Copper.


^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Full Copper)



Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Minimum Copper)

PACKAGE OUTLINE

MICRO FOOT: 4-BUMP (2 x 2, 0.5 mm PITCH)

Notes (Unless otherwise specified):

- 1. All dimensions are in millimeters.
- 2. Four (4) solder bumps are lead (Pb)-free 95.5Sn/3.8Ag/0.7Cu with diameter \varnothing 0.30 mm to 0.32 mm.
- 3. Backside surface is coated with a Ti/Ni/Ag layer.
- 4. Non-solder mask defined copper landing pad.
- 5. is location of pin 1.

Dim.	Millimeters ^a			Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	0.462	0.505	0.548	0.0181	0.0198	0.0215	
A ₁	0.220	0.250	0.280	0.0086	0.0098	0.0110	
A ₂	0.242	0.255	0.268	0.0095	0.0100	0.0105	
b	0.300	0.310	0.320	0.0118	0.0122	0.0126	
е	0.500			0.0197			
s	0.230	0.250	0.270	0.0090	0.0098	0.0106	
D	0.920	0.960	1.000	0.0362	0.0378	0.0394	

Notes

 $\ensuremath{\text{a.}}$ Use millimeters as the primary measurement.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?65363.

Document Number: 65363 S09-1922-Rev. A, 28-Sep-09

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000
Revision: 18-Jul-08
www.vishay.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)