Preliminary

VS-GT50TP60N

Vishay Semiconductors

Half Bridge IGBT Power Module, 600 V, 50 A

New INT-A-PAK

PRODUCT SUMMARY			
V _{CES}	600 V		
$I_{\rm C}$ at $T_{\rm C}$ = 80 °C	50 A		
V _{CE(sat)} (typical) at I _C = 50 A, 25 °C	1.65 V		

FEATURES

- Low V_{CE(sat)} trench IGBT technology
- 5 µs short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- Maximum junction temperature 175 °C
- Low inductance case
- · Fast and soft reverse recovery antiparallel FWD
- Isolated copper baseplate using DCB (Direct Copper Bonding) technology
- Compliant to RoHS Directive 2002/95/EC

TYPICAL APPLICATIONS

- UPS (Uninterruptable Power Supply)
- Electronic welders
- Switching mode power supplies

DESCRIPTION

Vishay's IGBT power module provides ultra low conduction loss as well as short circuit ruggedness. It is designed for applications such as UPS and SMPS.

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Gate to emitter voltage	V _{GES}		± 20	v	
Collector current		T _C = 25 °C	85		
	lc	T _C = 80 °C	50		
Pulsed collector current	I _{CM} ⁽¹⁾	t _p = 1 ms	100	А	
Diode continuous forward current	lF	T _C = 80 °C	50		
Diode maximum forward current	I _{FM} ⁽¹⁾	t _p = 1 ms	100		
Maximum power dissipation	PD	T _J = 175 °C	208	W	
RMS isolation voltage	V _{ISOL}	f = 50 Hz, t = 1 min	4000	V	

Note

⁽¹⁾ Repetitive rating: Pulse width limited by maximum junction temperature.

1

COMPLIANT

Vishay Semiconductors

IGBT ELECTRICAL SPECIFICATIONS ($T_c = 25$ °C unless otherwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP.				UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	T _J = 25 °C	600	-	-	
Collector to emitter saturation voltage	V _{CE(sat)}	V_{GE} = 15 V, I _C = 50 A, T _J = 25 °C	-	1.65	2.10	V
		V_{GE} = 15 V, I_C = 50 A, T_J = 175 °C	-	2.05	-	
Gate to emitter threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_C = 1.4 \text{ mA}, T_J = 25 ^\circ\text{C}$	4.0	4.9	6.5	
Collector cut-off current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 \text{ V}, \text{ T}_{J} = 25 ^{\circ}\text{C}$	-	-	1.0	mA
Gate to emitter leakage current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V, T_J = 25 \text{ °C}$	-	-	400	nA

SWITCHING CHARACTERISTICS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Turn-on delay time	t _{d(on)}		-	58	-	- ns	
Rise time	tr		-	31	-		
Turn-off delay time	t _{d(off)}	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 50 \text{ A}, \text{ R}_{g} = 3.3 \Omega,$ $V_{GE} = \pm 15 \text{ V}, \text{ T}_{J} = 25 \text{ °C}$	-	80	-		
Fall time	t _f	$V_{GE} = \pm 15 \text{ V}, \text{ T}_{J} = 25 \text{ °C}^{3}$	-	100	-		
Turn-on switching loss	E _{on}		-	0.41	-	- mJ	
Turn-off switching loss	E _{off}		-	0.42	-		
Turn-on delay time	t _{d(on)}		-	64	-	- ns	
Rise time	t _r		-	37	-		
Turn-off delay time	t _{d(off)}	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 50 \text{ A}, \text{ R}_{g} = 3.3 \Omega,$	-	90	-		
Fall time	t _f		-	117	-		
Turn-on switching loss	E _{on}		-	0.69	-	ml	
Turn-off switching loss	E _{off}		-	0.69	-	– mJ	
Input capacitance	C _{ies}		-	3.03	-		
Output capacitance	C _{oes}	$V_{GE} = 0 V, V_{CE} = 30 V, f = 1.0 MHz$	-	0.25	-	nF	
Reverse transfer capacitance	C _{res}		-	0.09	-		
SC data	I _{SC}	$\begin{array}{c} t_p \leq 5 \; \mu s, \; V_{GE} = 15 \; V, \; T_J = 125 \; ^\circ C, \\ V_{CC} = 360 \; V, \; V_{CEM} \leq 600 \; V \end{array}$	-	450	-	А	
Stray inductance	L _{CE}		-	-	30	nH	
Module lead resistance, terminal to chip	R _{CC'+EE'}		-	0.75	-	mΩ	

DIODE ELECTRICAL SPECIFICATIONS ($T_c = 25$ °C unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Forward voltage	V _F	I _F = 50 A	T _J = 25 °C	-	1.35	1.75	V
			T _J = 125 °C	-	1.37	-	
Reverse recovery charge	Q _{rr}	$I_{F} = 50 \text{ A}, V_{R} = 300 \text{ V}, \\ R_{G} = 3.3 \Omega \\ V_{GE} = -15 \text{ V}$	T _J = 25 °C	-	2.3	-	- μC - Α
			T _J = 125 °C	-	4.3	-	
Peak reverse recovery current	I _{rr}		T _J = 25 °C	-	33	-	
			T _J = 125 °C	-	58	-	
Reverse recovery energy	E _{rec}		T _J = 25 °C	-	0.56	-	
			T _J = 125 °C	-	1.11	-	- mJ

Revision: 22-Dec-11

2

Document Number: 94666

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction temperature	range	TJ		-	-	175	°C
Storage temperature range		T _{Stg}		- 40	-	125	°C
Junction to case	IGBT	- R _{thJC}		-	-	0.72	к/w
per ½ module Diode	Diode			-	-	1.02	
Case to sink (Conductive greas	e applied)	R _{thCS}		-	0.05	-	
Mounting torque			Power terminal screw: M5 2.5 to 5.0 Mounting screw: M6 3.0 to 5.0		2.5 to 5.0)	Nm
)		
Weight			Weight of module	-	150	-	g

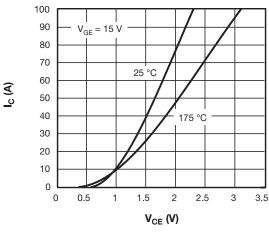


Fig. 1 - IGBT Typical Output Characteristics

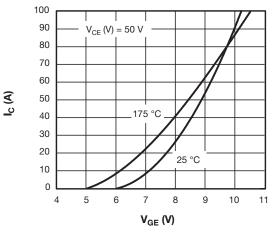
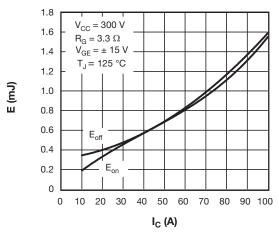



Fig. 2 - IGBT Transfer Characteristics

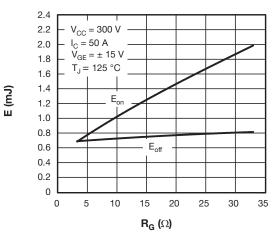
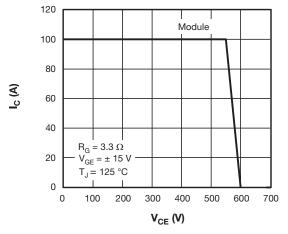
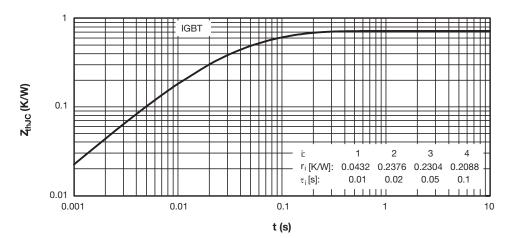


Fig. 4 - IGBT Switching Loss vs. $\ensuremath{\mathsf{R}_{\mathsf{G}}}$

3


Document Number: 94666

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From <u>Oneyac.com</u> w.vishay.com/doc?91000



Vishay Semiconductors

Fig. 5 - RBSOA

I_F (A)

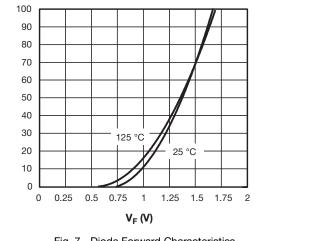


Fig. 7 - Diode Forward Characteristics

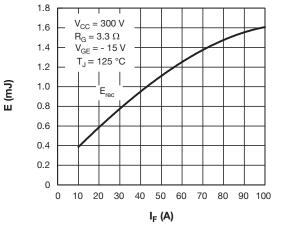


Fig. 8 - Diode Switching Loss vs. I_F

Revision: 22-Dec-11

4

Document Number: 94666

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

Vishay Semiconductors

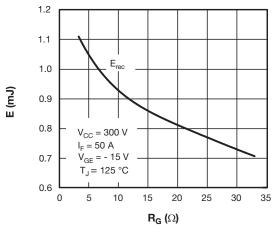


Fig. 9 - Diode Switching Loss vs. $\ensuremath{\mathsf{R}_{\mathsf{G}}}$

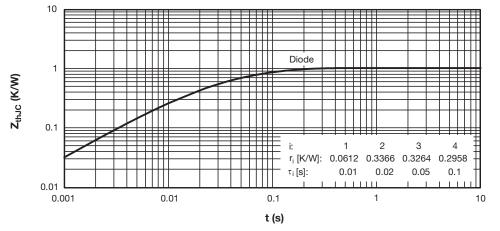
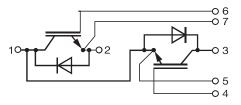
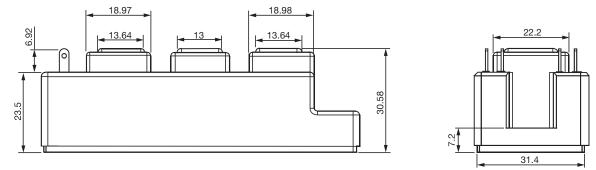



Fig. 10 - Diode Transient Thermal Impedance

CIRCUIT CONFIGURATION



Vishay Semiconductors

DIMENSIONS in millimeters

 Revision: 22-Dec-11
 6
 Document Number: 94666

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com
 W.vishay.com/doc?91000

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)