

COMPLIANT

"Half Bridge" IGBT INT-A-PAK, (Trench PT IGBT), 100 A

Proprietary Vishay IGBT Silicon "L Series"

PRIMARY CHARACTERISTICS					
V_{CES}	600 V				
I_C DC, $T_C = 130$ °C	100 A				
V _{CE(on)} at 100 A, 25 °C	1.16 V				
Speed	DC to 1 kHz				
Package	INT-A-PAK				
Circuit configuration	Half bridge				

FEATURES

- Trench PT IGBT technology
- FRED Pt® anti-parallel diodes with fast recovery
- Very low conduction losses
- Al₂O₃ DBC
- UL pending
- Designed for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Optimized for high current inverter stages (AC TIG welding machines)
- Direct mounting to heatsink
- Very low junction to case thermal resistance
- Low EMI

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	337		
Continuous collector current	I _C	T _C = 80 °C	235	^	
Pulsed collector current	I _{CM}		440	Α	
Peak switching current	I _{LM}		440		
Gate to emitter voltage	V_{GE}		± 20	V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	
Maximum power dissipation	В	T _C = 25 °C	781	W	
Maximum power dissipation	P_{D}	T _C = 100 °C	312		
Operating junction temperature range	TJ		-40 to +150	°C	
Storage temperature range	T _{Stg}		-40 to +125	°C	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V, } I_{C} = 500 \mu\text{A}$	600	-	-		
		$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}$	-	1.16	1.34		
Collector to emitter voltage	$V_{CE(on)}$	$V_{GE} = 15 \text{ V}, I_{C} = 200 \text{ A}$	-	1.37	-	V	
	\	$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$	-	1.08	-		
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 3.2 \text{ mA}$	4.9	5.8	8.8	3	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_{C} = 3.2$ mA, (25 °C to 125 °C)	-	-27	-	mV/°C	
Forward transconductance	9 _{fe}	$V_{CE} = 20 \text{ V}, I_{C} = 50 \text{ A}$	-	93	-	S	
Transfer characteristics	V_{GE}	$V_{CE} = 20 \text{ V}, I_{C} = 100 \text{ A}$	-	10.2	-	V	
Collector to emitter leakage current	1	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$	-	1.0	150	μΑ	
Collector to emitter leakage current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	300	-		
Diode forward voltage drop	V	$I_C = 100 \text{ A}, V_{GE} = 0 \text{ V}$	-	1.36	1.96	V	
Diode forward voitage drop	V_{FM}	$I_C = 100 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C}$	-	1.17	-		
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$	-	-	± 500	nA	

Revision: 09-Nov-2020 1 Document Number: 95721

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge	Qg		-	942	-	
Gate to emitter charge	Q _{ge}	$I_C = 100 \text{ A},$ $V_{CC} = 400 \text{ V}$	-	295	-	nC
Gate to collector charge	Q _{gc}	AGC = 400 A	-	802	-	
Turn-on switching energy	E _{on}		-	1.0	-	
Turn-off switching energy	E _{off}	1 100 A	-	7.9	-	mJ
Total switching energy	E _{ts}	$I_C = 100 \text{ A},$ $V_{CC} = 300 \text{ V},$	-	8.9	-	
Turn-on delay time	t _{d(on)}	V _{GE} = 15 V, L = 500 μH	-	242	-	- ns
Rise time	t _r	$R_g = 3.3 \Omega,$ $T_{.1} = 25 ^{\circ}\text{C}$	-	66	-	
Turn-off delay time	t _{d(off)}	1 1 J = 25 C	-	453	-	
Fall time	t _f	[-	460	-	
Turn-on switching energy	E _{on}		-	2.0	-	
Turn-off switching energy	E _{off}	100 4	-	15.3	-	mJ
Total switching energy	E _{ts}	$I_C = 100 \text{ A},$ $V_{CC} = 300 \text{ V},$	-	17.3	-	
Turn-on delay time	t _{d(on)}	$V_{GE} = 15 \text{ V}, L = 500 \mu\text{H}$ $R_g = 3.3 \Omega,$ $T_J = 125 \text{ °C}$	-	257	-	
Rise time	t _r		-	68	-	
Turn-off delay time	t _{d(off)}		-	716	-	ns
Fall time	t _f		-	868	-	
Reverse bias safe operating area	RBSOA	$\begin{split} &T_J = 150^{\circ}\text{C, I}_C = 440 \text{ A, V}_{CC} = 300 \text{ V,} \\ &V_p = 600 \text{ V, R}_g = 3.3 \ \Omega, \\ &V_{GE} = 15 \text{ V to 0 V, L} = 500 \ \mu\text{H} \end{split}$	Fullsquare			
Diode reverse recovery time	t _{rr}	I _E = 50 A.	-	115	-	ns
Diode peak reverse current	I _{rr}	$dI_F/dt = 200 A/\mu s$,	-	11	-	Α
Diode recovery charge	Q _{rr}	V _{rr} = 200 V	-	638	-	nC
Diode reverse recovery time	t _{rr}	I _F = 50 A,	-	210	-	ns
Diode peak reverse current	I _{rr}	$dI_F/dt = 200 A/\mu s$,	-	21.4	-	Α
Diode recovery charge	Q _{rr}	V _{rr} = 200 V, T _J = 125 °C	-	2251	1	nC

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL		MIN.	TYP.	MAX.	UNITS	
Operating junction to	emperature range	TJ		-40	-	150	°C	
Storage temperature	Storage temperature range			-40	-	125] [
Junction to case	per switch	В		-	-	0.16	°C/W	
Junction to case	per diode	R _{thJC}		-	-	0.48		
Case to sink per module		R _{thCS}		-	0.1	-		
Mounting torque ±10 % to heatsink	to heatsink		A mounting compound is recommended and the torque should		4 to 6		Nm	
	busbar		be rechecked after a period of 3 hours to allow the spread of the compound	4100		INIII		
Weight				-	185	-	g	

www.vishay.com

Vishay Semiconductors

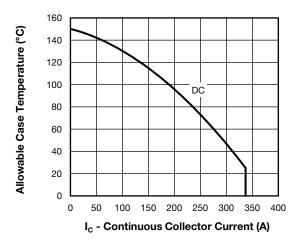


Fig. 1 - Maximum IGBT Continuous Collector Current vs.

Case Temperature

Fig. 2 - IGBT Reverse BIAS SOA T_J = 150 °C, V_{GE} = 15 V

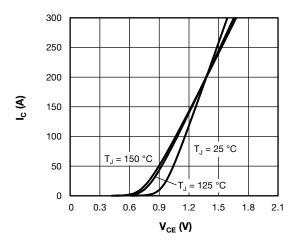


Fig. 3 - Typical IGBT Output Characteristics, V_{GE} = 15 V

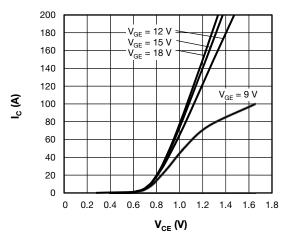


Fig. 4 - Typical IGBT Output Characteristics, $T_J = 125 \, ^{\circ}\text{C}$

Fig. 5 - Collector to Emitter Voltage vs. Junction Temperature

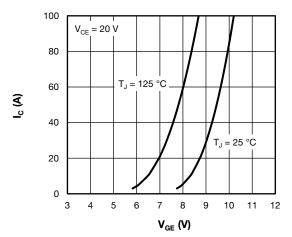


Fig. 6 - Typical IGBT Transfer Characteristics

www.vishay.com

Vishay Semiconductors

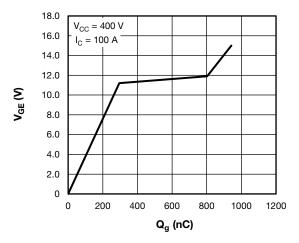


Fig. 7 - Typical Total Gate Charge vs. Gate to Emitter Voltage

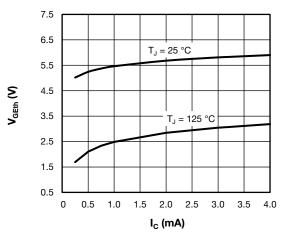


Fig. 8 - Typical IGBT Gate Threshold Voltage

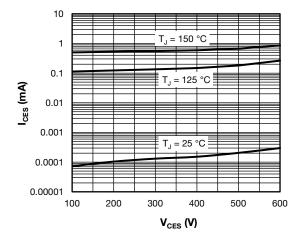


Fig. 9 - Typical IGBT Zero Gate Voltage Collector Current

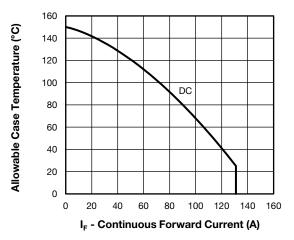


Fig. 10 - Maximum Diode Continuous Forward Current vs. Case Temperature

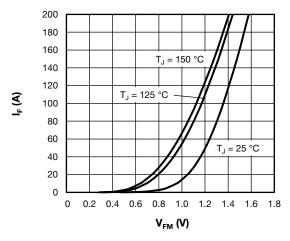


Fig. 11 - Typical Diode Forward Characteristics

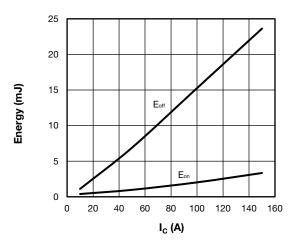


Fig. 12 - Typical IGBT Energy Loss vs. I_C T_J = 125 °C, V_{CC} = 300 V, R_g = 3.3 $\Omega,$ V_{GE} = 15 V, L = 500 μH

www.vishay.com Vishay Semiconductors

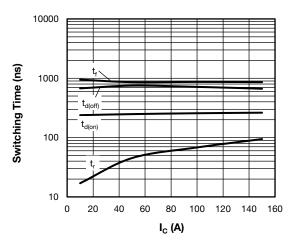


Fig. 13 - Typical IGBT Switching Time vs. I_C T $_J$ = 125 °C, V_{CC} = 300 V, R_g = 3.3 $\Omega,$ V_{GE} = 15 V, L = 500 μH

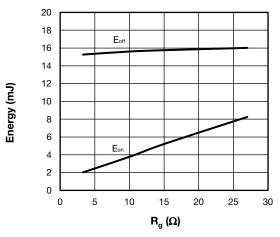


Fig. 14 - Typical IGBT Energy Loss vs. R_g T_J = 125 °C, V_{CC} = 300 V, I_C = 100 A, V_{GE} = 15 V, L = 500 μH

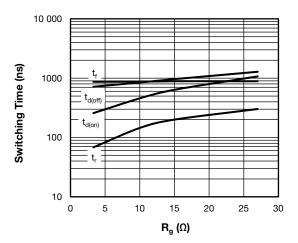


Fig. 15 - Typical IGBT Switching Time vs. R_g $T_J=125~^{\circ}C,\,V_{CC}=300$ V, $I_C=100$ A, $V_{GE}=15$ V, $L=500~\mu H$

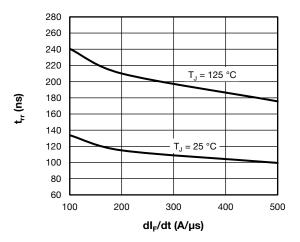


Fig. 16 - Typical Diode Reverse Recovery Time vs. dI_F/dt $V_{rr} = 200 \text{ V}, I_F = 50 \text{ A}$

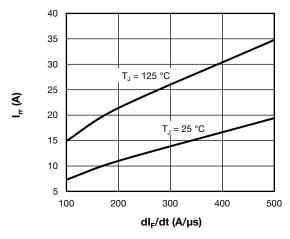


Fig. 17 - Typical Diode Reverse Recovery Current vs. dI_F/dt $V_{rr} = 200 \text{ V}, I_F = 50 \text{ A}$

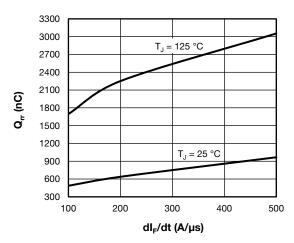


Fig. 18 - Typical Diode Reverse Recovery Charge vs. dI_F/dt) $V_{rr} = 200 \text{ V}, I_F = 50 \text{ A}$

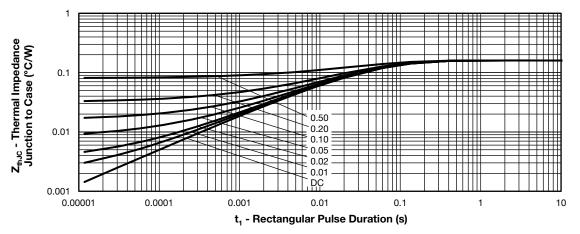


Fig. 19 - Maximum Thermal Impedance ZthJC Characteristics - (IGBT)

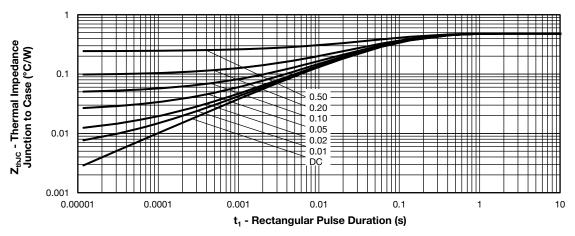
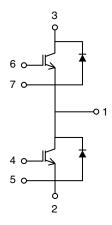


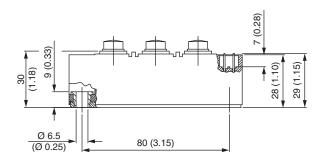
Fig. 20 - Maximum Thermal Impedance Z_{thJC} Characteristics - (Diode))

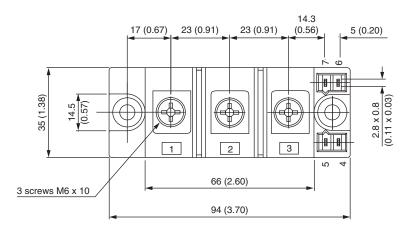

ORDERING INFORMATION TABLE

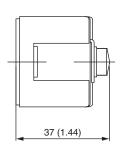
Device code VS-**GP** 100 F **PbF** T S 60 S [2] 3 (4) 5 8 6 9

- 1 Vishay Semiconductors product
- 2 IGBT die technology (GP = trench PT)
- 3 Current rating (100 = 100 A)
- 4 Circuit configuration (T = half bridge)
- 5 Package indicator (S = INT-A-PAK)
- 6 Voltage code (60 = 600 V)
- 7 Speed/type (S = standard speed IGBT)
- 8 Diode type
- 9 None = standard production; PbF = Lead (Pb)-free

CIRCUIT CONFIGURATION




LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95173				



INT-A-PAK IGBT

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)