

Vishay Semiconductors

Two-Line ESD Protection Diode in SOT-23

MARKING (example only)

YYY = type code (see table below) XX = date code

LINKS TO ADDITIONAL RESOURCES

PART

NUMBER

(EXAMPLE)

VGSOT05C-

VGSOT05C-

VGSOT05C-

VGSOT05C-

ORDERING INFORMATION

AEC-Q101

QUALIFIED

Н

Н

PRIMARY CHARACTERISTICS			
V _{BR}	4 V to 47 V		
V _{RWM}	3.3 V to 36 V		
P _{PPM} (8/20μs)	400 W to 540 W		
P _{PPM} (10 x 1000μs)	44 W		
ESD immunity (330 pF / 330 Ω)	± 30 kV		
T _J max.	150 °C		
Polarity	Unidirectional		
Package	SOT-23		
Circuit configuration	Dual, common anode		

ENVIRONMENTAL AND QUALITY CODE

RoHS-COMPLIANT+

LEAD (Pb)-FREE

TERMINATIONS

G

G

G

G

FEATURES

- Two-line unidirectional ESD protection diode
- Common anode
- Can be used as bidirectional protection diode
- ESD immunity acc. IEC 61000-4-2 and ISO 10605
 - ± 30 kV contact discharge
 - ± 30 kV air discharge
- ESD capability according to AEC-Q101: human body model: class H3B: > 8 kV

PACKAGING CODE

10K PER 13" REEL

(8 mm TAPE),

10K/BOX = MOQ

18

18

3K PER 7" REEL

(8 mm TAPE),

15K/BOX = MOQ

08

80

- e3 Sn
- AEC-Q101 qualified available
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

(5-2008)

ORDERING CODE

(EXAMPLE)

VGSOT05C-G3-08

VGSOT05C-HG3-08

VGSOT05C-G3-18

VGSOT05C-HG3-18

Rev. 1.1, 13-Feb-2025 **1** Document Number: 86325

REVISION

TIN

PLATED

3

3

3

3

PACKAG	E DATA						
DEVICE NAME	PACKAGE NAME	TYPE CODE	ENVIRONMENTAL STATUS	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS
VGSOT03C	SOT-23	H03	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT04C	SOT-23	H04	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT05C	SOT-23	H05	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT08C	SOT-23	H08	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT12C	SOT-23	H12	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT15C	SOT-23	H15	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT22C	SOT-23	H22	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT24C	SOT-23	H24	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C
VGSOT36C	SOT-23	H36	Green	9.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C

ABSOLUTE MAXIMUM RATINGS VGSOT03C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
B	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	1	44	А
Peak pulse current	t _p = 10/1000 μs; single shot	I _{PPM}	6	А
Dook pulse pourer	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	D	540	W
Peak pulse power	t _p = 10/1000 μs; single shot	P _{PP}	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	.,	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT04C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Dook mulaa auggant	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	I _{PPM}	40	Α
Peak pulse current	t _p = 10/1000 μs; single shot		5	Α
Dook nulse neuror	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	540	W
Peak pulse power	t _p = 10/1000 μs; single shot		44	W
CCD image unit.	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
ESD immunity	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	· V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT05C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	1	36	Α
Feak puise current	$t_p = 10/1000 \mu s$; single shot	I _{PPM}	4	Α
Peak pulse power	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	500	W
Feak puise power	t _p = 10/1000 μs; single shot	ГРР	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
ESD immunity	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT08C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	I	28	Α
reak puise current	t _p = 10/1000 μs; single shot	ІРРМ	3	Α
Dook pulse power	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	500	W
Peak pulse power	$t_p = 10/1000 \mu s$; single shot	ГРР	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	VESD	± 30	kV
Operating temperature	Junction temperature	T _J	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT12C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Daala avilaa aviinaat	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	1	18.5	Α
Peak pulse current	$t_p = 10/1000 \mu s$; single shot	ІРРМ	2	Α
Peak pulse power	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	480	W
Peak puise power	$t_p = 10/1000 \mu s$; single shot	ГРР	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	T _J	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

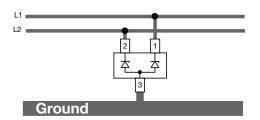
ABSOLUTE MAXIMUM RATINGS VGSOT15C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	I	15.5	Α
reak puise current	t _p = 10/1000 μs; single shot	ІРРМ	1.6	Α
Peak pulse power	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	450	W
Feak puise power	t _p = 10/1000 μs; single shot	ГРР	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

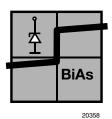
ABSOLUTE MAXIMUM RATINGS VGSOT22C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot		9.4	Α
reak puise current	$t_p = 10/1000 \mu s$; single shot	I _{PPM}	1.1	Α
Dook nules nouser	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P _{PP}	400	W
Peak pulse power	$t_p = 10/1000 \mu s$; single shot		44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT24C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	I	8.4	А
Feak puise current	t _p = 10/1000 μs; single shot	I _{PPM}	1	А
Peak pulse power	$t_p = 8/20 \mu s$ acc. IEC 61000-4-5; single shot	P_PP	400	W
Feak puise power	t _p = 10/1000 μs; single shot	ГРР	44	W
ESD immunity	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS VGSOT36C (T _{amb} = 25 °C unless otherwise specified)				
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT
Peak pulse current	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	I	5.6	Α
reak puise current	t _p = 10/1000 μs; single shot	I _{PPM}	0.7	Α
Peak pulse power	t _p = 8/20 μs acc. IEC 61000-4-5; single shot	P_PP	400	W
Peak pulse power	t _p = 10/1000 μs; single shot	ГРР	44	W
F0D: "	Air and contact discharge acc. ISO 10605 (330 pF / 330 Ω); 10 pulses	V	± 30	kV
ESD immunity	Air and contact discharge acc. IEC 61000-4-2 (150 pF / 330 Ω); 10 pulses	V _{ESD}	± 30	kV
Operating temperature	Junction temperature	TJ	-55 to +150	°C
Storage temperature		T _{STG}	-55 to +150	°C

Vishay Semiconductors

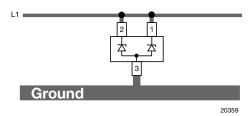

BIAs-MODE (2-line Bidirectional Asymmetrical protection mode)


With the VGSOTxxC two signal- or data-lines (L1, L2) can be protected against voltage transients. With pin 3 connected to ground and pin 1 and pin 2 connected to a signal- or data-line which has to be protected. As long as the voltage level on the data- or signal-line is between 0 V (ground level) and the specified Maximum Reverse Working Voltage (V_{RWM}) the protection diode between pin 2 and pin 3 and between pin 1 and pin 3 offers a high isolation to the ground line. The protection device behaves like an open switch.

As soon as any positive transient voltage signal exceeds the breakdown voltage level of the protection diode, the diode becomes conductive and shorts the transient current to ground. Now the protection device behaves like a closed switch. The Clamping Voltage (V_C) is defined by the breakdown voltage (V_{BR}) level plus the voltage drop at the series impedance (resistance and inductance) of the protection diode.

Any negative transient signal will be clamped accordingly. The negative transient current is flowing in the forward direction through the protection diode. The low Forward Voltage (V_F) clamps the negative transient close to the ground level.

Due to the different clamping levels in forward and reverse direction the VGSOTxxC clamping behavior is Bidirectional and Asymmetrical (BiAs).



If a higher surge current or peak pulse current (I_{PP}) is needed, both protection diodes in the VGSOTxxC can also be used in parallel in order to "double" the performance.

This offers:

- double surge power = double peak pulse current (2 x I_{PPM})
- half of the line inductance = reduced clamping voltage
- half of the line resistance = reduced clamping voltage
- double line capacitance (2 x C_D)
- double reverse leakage current (2 x I_R)

PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	3.3	V
Reverse voltage	At I _R = 100 μA	V_R	3.3	-	-	V
Reverse current	At V _R = 3.3 V	I _R	-	-	100	μΑ
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	4.0	4.6	5.5	V
Deverse elemning valtage	At $I_{PP} = 1$ A; $t_p = 8/20 \mu s$	V	-	5.7	7.5	V
Reverse clamping voltage	At $I_{PP} = I_{PPM} = 44 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-		V	
Farmer delegation with the	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V	-	1	1.2	V
Forward clamping voltage	At $I_{PP} = I_{PPM} = 44 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	4.5	=	V
Canacitanas	At V _R = 0 V; f = 1 MHz	0	-	460	600	pF
Capacitance	At V _R = 1.6 V; f = 1 MHz	- C _D	-	320	-	pF

ELECTRICAL CHARACTERISTICS VGSOT04C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	4	V		
Reverse voltage	At I _R = 20 μA	V_R	4	-	-	V		
Reverse current	At V _R = 4 V	I _R	-	-	20	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	5	6.1	7	V		
Deverse elemning veltage	At $I_{PP} = 1$ A; $t_p = 8/20 \mu s$	M	-	6.5	8	V		
Reverse clamping voltage	At I _{PP} = I _{PPM} = 40 A; t _p = 8/20 μs	V _C	-	10.3	13.5	V		
Forward elemping voltage	At $I_{PP} = 1$ A; $t_p = 8/20 \mu s$	V	-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 40 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	4.2	-	V		
Canacitanas	At $V_R = 0 \text{ V}$; $f = 1 \text{ MHz}$	- C _D	-	360	450	pF		
Capacitance	At $V_B = 2 V$; $f = 1 MHz$		-	225	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT05C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	5	V		
Reverse voltage	At I _R = 10 μA	V_R	5	-	-	V		
Reverse current	At V _R = 5 V	I _R	-	-	10	μA		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	6	6.8	8	V		
Poverse elemping veltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	W	-	7.3	8.7	V		
Reverse clamping voltage	At $I_{PP} = I_{PPM} = 36 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	11	14	V		
Converd elemening veltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$		-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 36 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	=	3.9	-	V		
Canacitanas	At $V_R = 0 V$; $f = 1 MHz$		-	276	350	pF		
Capacitance	At V _R = 2.5 V; f = 1 MHz	C _D	-	165	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT08C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	8	V		
Reverse voltage	At I _R = 5 μA	V_R	8	-	-	V		
Reverse current	At V _R = 8 V	I _R	-	-	5	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	9	10	11	V		
Reverse clamping voltage	At $I_{PP} = 1$ A; $t_p = 8/20 \mu s$	V _C	-	10.7	13	V		
heverse clamping voltage	At $I_{PP} = I_{PPM} = 28 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	14.4	18	V		
Forward elemping voltage	At $I_{PP} = 1$ A; $t_p = 8/20 \mu s$	V _F	-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 28 \text{ A}$; $t_p = 8/20 \mu\text{s}$	VF	-	3.2	-	V		
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	0	-	175	250	pF		
Capacitance	At $V_R = 4 V$; $f = 1 MHz$	C _D	-	90	-	pF		

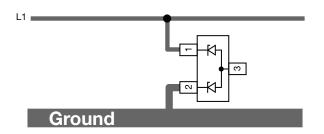
ELECTRICAL CHARACTERISTICS VGSOT12C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	=.	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	=.	-	12	V		
Reverse voltage	At I _R = 1 μA	V_R	12	-	-	V		
Reverse current	At V _R = 12 V	I _R	=.	-	1	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	13.5	15	16.5	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	W	-	15.4	18.7	V		
heverse ciamping voltage	At $I_{PP} = I_{PPM} = 18.5 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	=.	20.2	26	V		
Forward clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	=.	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 18.5 \text{ A}$; $t_p = 8/20 \mu\text{s}$	VF	-	2.5	-	V		
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	115	150	pF		
Сараспансе	At V _R = 6 V; f = 1 MHz		-	54	-	pF		

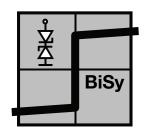
ELECTRICAL CHARACTERISTICS VGSOT15C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	15	V		
Reverse voltage	At I _R = 1 μA	V_R	15	-	-	V		
Reverse current	At V _R = 15 V	I _R	-	-	1	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	16.5	18	20	V		
Payaraa alampina valtaga	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	W	-	18.5	22.5	V		
Reverse clamping voltage	At $I_{PP} = I_{PPM} = 15.5 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	23.5	28.8	V		
Forward elemping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V	-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 15.5 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	2.2	-	V		
Canacitanas	At V _R = 0 V; f = 1 MHz		-	100	120	pF		
Capacitance	At V _R = 7.5 V; f = 1 MHz	C _D	-	43	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT22C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	22	V		
Reverse voltage	At I _R = 1 μA	V_R	22	-	-	V		
Reverse current	At V _R = 22 V	I _R	-	-	1	μA		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	25.1	27	28.8	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$.,,	-	28	32	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 9.4 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	34.5	41	V		
Forward clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 9.4 \text{ A}$; $t_p = 8/20 \mu\text{s}$	VF	=.	1.8	-	V		
Capacitance	At $V_R = 0 V$; $f = 1 MHz$		-	70	85	pF		
Сараспансе	At V _R = 11 V; f = 1 MHz	C _D	-	27	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT24C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	24	V		
Reverse voltage	At I _R = 1 μA	V_{R}	24	-	-	V		
Reverse current	At V _R = 24 V	I _R	-	-	1	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	27	30	33	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$		-	31	37	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 8.4 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	37.5	46	V		
Forward elemping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	W	-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 8.4 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	1.7	-	V		
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	65	80	pF		
Сараспансе	At V _R = 12 V; f = 1 MHz		-	23	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT36C (T _{amb} = 25 °C unless otherwise specified)								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	2	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	36	V		
Reverse voltage	At I _R = 1 μA	V_R	36	-	-	V		
Reverse current	At V _R = 36 V	I _R	=.	-	1	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	39	43	47	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _C	-	45	60	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 5.6 \text{ A}$; $t_p = 8/20 \mu\text{s}$	v _C	=.	52	71	V		
Converd elements veltage	At $I_{PP} = 1 \text{ A}$; $t_p = 8/20 \mu\text{s}$		-	1	1.2	V		
Forward clamping voltage	At $I_{PP} = I_{PPM} = 5.6 \text{ A}$; $t_p = 8/20 \mu\text{s}$	V _F	-	1.4	-	V		
Canacitanas	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	45	65	pF		
Capacitance	At V _R = 18 V; f = 1 MHz		-	14	-	pF		


Vishay Semiconductors


BISy-MODE (1-line bidirectional symmetrical protection mode)

If a bipolar symmetrical protection device is needed the VGSOTxxC can also be used as a single line protection device. Therefore pin 1 has to be connected to the signal- or data-line (L1) and pin 2 to ground (or vice versa). Pin 3 must not be connected.

Positive and negative voltage transients will be clamped in the same way. The clamping current through the VGSOTxxC passes one diode in forward direction and the other one in reverse direction. The clamping voltage (V_C) is defined by the breakdown voltage (V_{BR}) level of one diode plus the forward voltage of the other diode plus the voltage drop at the series impedances (resistances and inductances) of the protection device.

Due to the same clamping levels in positive and negative direction the VGSOTxxC voltage clamping behaviour is bidirectional and symmetrical (BiSy).

20361

ELECTRICAL CHARACTERISTICS VGSOT03C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	3.8	V		
Reverse voltage	At I _R = 100 μA	V_R	3.8	-	-	V		
Reverse current	At V _R = 3.8 V	I _R	-	-	100	μA		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	4.5	5.3	6.2	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	7	8.4	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 44 \text{ A}$, $t_p = 8/20 \mu\text{s}$	VC	-	14	16.8	V		
Canacitance	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	230	300	pF		
Capacitance	At V _R = 1.6 V; f = 1 MHz		-	190	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT04C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	4.5	V		
Reverse voltage	At I _R = 20 μA	V_R	4.5	-	-	V		
Reverse current	At V _R = 4.5 V	I _R	-	-	20	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	5.5	6.8	7.7	V		
Poverse elemning veltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	W	-	7.5	9	V		
Reverse clamping voltage	At $I_{PP} = I_{PPM} = 40 \text{ A}, t_p = 8/20 \mu \text{s}$	V _C	=	15.7	18.8	V		
Canacitanas	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	180	225	pF		
Capacitance	At $V_R = 2 V$; $f = 1 MHz$		-	136	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT05C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	ı	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	ı	-	5.5	V		
Reverse voltage	At I _R = 10 μA	V_R	5.5	-	-	V		
Reverse current	At V _R = 5.5 V	I _R	ı	-	10	μA		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	6.5	7.5	8.7	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	8.1	9.7	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 36 \text{ A}, t_p = 8/20 \mu s$	v _C	-	17	20.4	V		
Capacitance	At V _R = 0 V; f = 1 MHz	0	-	138	175	pF		
Capacitance	At V _R = 2.5 V; f = 1 MHz	O _D		100	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT08C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected								
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	8.5	V		
Reverse voltage	At I _R = 5 μA	V_R	8.5	-	-	V		
Reverse current	At V _R = 8.5 V	I _R	-	-	5	μΑ		
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	9.5	10.7	11.7	V		
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V	-	11.7	14	V		
neverse clamping voltage	At $I_{PP} = I_{PPM} = 28 \text{ A}, t_p = 8/20 \mu s$	V _C	-	18.5	22.2	V		
Canaditanaa	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	87	125	pF		
Capacitance	At V _R = 4 V; f = 1 MHz		ı	60	-	pF		

ELECTRICAL CHARACTERISTICS VGSOT12C ($T_{amb} = 25$ °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected						
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	12.5	V
Reverse voltage	At I _R = 1 μA	V_R	12.5	-	-	V
Reverse current	At V _R = 12.5 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	13.5	15.7	16.5	V
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	16.4	19.7	V
	At $I_{PP} = I_{PPM} = 18.5 \text{ A}, t_p = 8/20 \mu s$		-	23.4	28.1	V
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	C _D	-	58	75	pF
	At $V_R = 6 V$; $f = 1 MHz$		-	36	-	pF

ELECTRICAL CHARACTERISTICS VGSOT15C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected						
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	ı	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	15.5	V
Reverse voltage	At I _R = 1 μA	V_R	15.5	-	-	V
Reverse current	At V _R = 15.5 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	17	18.7	20.7	V
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	20.4	24.5	V
	At $I_{PP} = I_{PPM} = 15.5 \text{ A}, t_p = 8/20 \mu s$		-	26.6	30.6	V
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	C-	-	50	60	pF
	At V _R = 7.5 V; f = 1 MHz	C _D	-	30	-	pF

ELECTRICAL CHARACTERISTICS VGSOT22C ($T_{amb} = 25$ °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected						
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	22.5	V
Reverse voltage	At I _R = 1 μA	V_R	22.5	-	-	V
Reverse current	At V _R = 22.5 V	I _R	-	-	1	μA
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	25.6	27.7	29.5	V
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	29	33.2	V
	At $I_{PP} = I_{PPM} = 9.4 \text{ A}, t_p = 8/20 \mu \text{s}$		-	-	-	V
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	C _D	-	35	43	pF
	At $V_R = 11 \text{ V}$; $f = 1 \text{ MHz}$	U _D		20	-	pF

ELECTRICAL CHARACTERISTICS VGSOT24C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected						
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	24.5	V
Reverse voltage	At I _R = 1 μA	V_R	24.5	-	-	V
Reverse current	At V _R = 24.5 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	27.5	30.7	33.7	V
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	V _C	-	34	41	V
	At $I_{PP} = I_{PPM} = 8.4 \text{ A}$, $t_p = 8/20 \mu\text{s}$		-	40	48	V
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	33	40	pF
	At V _R = 12 V; f = 1 MHz		-	17	-	pF

ELECTRICAL CHARACTERISTICS VGSOT36C (T _{amb} = 25 °C unless otherwise specified) between pin 1 to pin 2 or pin 2 to pin1; pin 3 not connected						
PARAMETER	TEST CONDITIONS / REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	36.5	V
Reverse voltage	At I _R = 1 μA	V_R	36.5	-	-	V
Reverse current	At V _R = 36.5 V	I _R	-	-	1	μA
Reverse breakdown voltage	At I _R = 1 mA	V_{BR}	39.5	43.7	47.7	V
Reverse clamping voltage	At $I_{PP} = 1 \text{ A}$, $t_p = 8/20 \mu\text{s}$	- V _C	-	50	60	V
	At $I_{PP} = I_{PPM} = 5.6 \text{ A}$, $t_p = 8/20 \mu\text{s}$		-	60	72	V
Capacitance	At $V_R = 0 V$; $f = 1 MHz$	- C _D	-	23	33	pF
	At V _R = 18 V; f = 1 MHz		-	10	-	pF

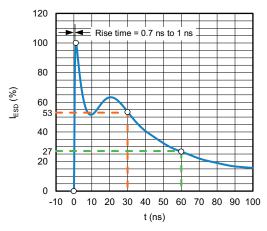


Fig. 1 - ESD Discharge Current Waveform According to IEC 61000-4-2 (330 Ω / 150 pF)

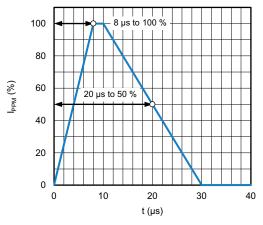


Fig. 2 - 8/20 μs Peak Pulse Current Waveform According to IEC 61000-4-5

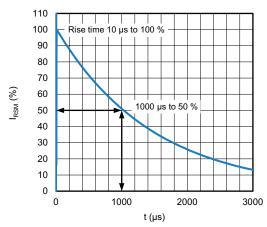


Fig. 3 - 10/1000 µs Peak Pulse Current Wave Form

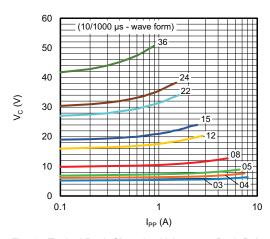


Fig. 4 - Typical Peak Clamping Voltage vs. Peak Pulse Current

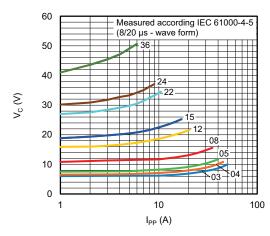


Fig. 5 - Typical Peak Clamping Voltage vs. Peak Pulse Current

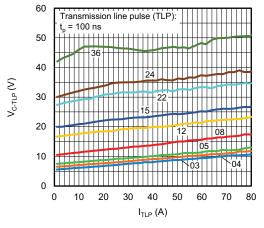


Fig. 6 - Typical Clamping Voltage vs. Peak Pulse Current

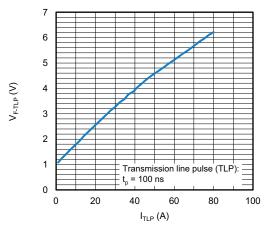


Fig. 7 - Typical Forward Voltage vs. Peak Pulse Current

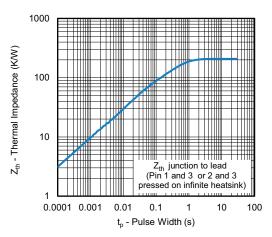


Fig. 10 - Thermal Impedance vs. Time

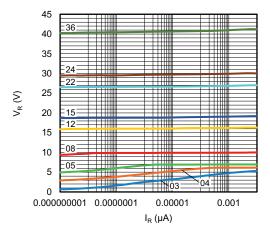
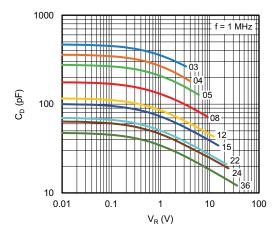
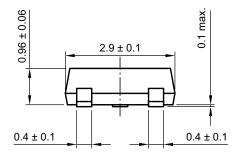
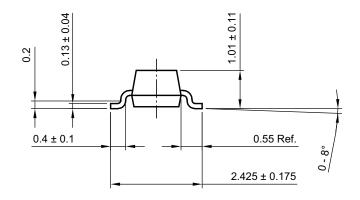
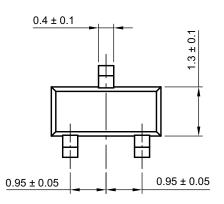
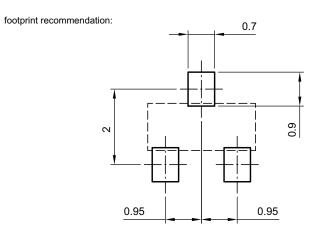


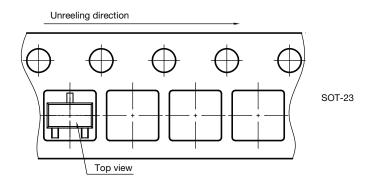
Fig. 8 - Typical Reverse Voltage vs. Reverse Current


Fig. 9 - Typical Capacitance vs. Reverse Voltage



PACKAGE DIMENSIONS in millimeters (inches): SOT-23



Document no.: S8-V-3929.01-009 (4) Created - Date: 18 Oct. 2021 Rev. 01 - Date: 18 Jan. 2022

23193

ORIENTATION IN CARRIER TAPE SOT-23

Orientation in carrier tape SOT-23 S8-V-3929.01-006 (4) 04.02.2010 22607

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)