


## Vishay Siliconix

# N-Channel 150 V (D-S) MOSFET

| PRODUCT SUMMARY     |                                  |                                 |                       |  |  |  |  |  |  |
|---------------------|----------------------------------|---------------------------------|-----------------------|--|--|--|--|--|--|
| V <sub>DS</sub> (V) | R <sub>DS(on)</sub> (Ω) MAX.     | I <sub>D</sub> (A) <sup>a</sup> | Q <sub>g</sub> (TYP.) |  |  |  |  |  |  |
| 150                 | 0.177 at V <sub>GS</sub> = 10 V  | 7.7                             |                       |  |  |  |  |  |  |
|                     | 0.185 at V <sub>GS</sub> = 7.5 V | 7.6                             | 4.3 nC                |  |  |  |  |  |  |
|                     | 0.250 at V <sub>GS</sub> = 6 V   | 4                               |                       |  |  |  |  |  |  |

#### PowerPAK® SC-70-6L Single



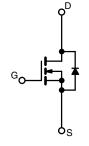


Marking Code: AV **Ordering Information:** 

SiA446DJ-T1-GE3 (Lead (Pb)-free and Halogen-free)

#### **FEATURES**

- ThunderFET® technology optimizes balance of R<sub>DS(on)</sub>, Q<sub>g</sub>, Q<sub>sw</sub> and Q<sub>oss</sub>
- 100 % Rq and UIS tested
- · Material categorization: For definitions of compliance please see www.vishay.com/doc?99912






HALOGEN FREE

#### APPLICATIONS

- DC/DC converters / boost converters
- Synchronous rectification
- · Power management
- LED backlighting



N-Channel MOSFET

| PARAMETER                                          |                        | SYMBOL                            | LIMIT               | UNIT   |  |
|----------------------------------------------------|------------------------|-----------------------------------|---------------------|--------|--|
| Drain-Source Voltage                               |                        | V <sub>DS</sub>                   | 150                 | V      |  |
| Gate-Source Voltage                                |                        | V <sub>GS</sub>                   | ± 20                | v      |  |
|                                                    | T <sub>C</sub> = 25 °C |                                   | 7.7                 |        |  |
| Continuous Dunis Comment (T. 150 °C)               | T <sub>C</sub> = 70 °C |                                   | 6.2                 |        |  |
| Continuous Drain Current (T <sub>J</sub> = 150 °C) | T <sub>A</sub> = 25 °C | I <sub>D</sub>                    | 3.3 b, c            |        |  |
|                                                    | T <sub>A</sub> = 70 °C |                                   | 2.6 b, c            | $\neg$ |  |
| Pulsed Drain Current (t = 100 μs)                  |                        | I <sub>DM</sub>                   | 10                  | A      |  |
| Castinosas Casuras Busin Biada Comunat             | T <sub>C</sub> = 25 °C |                                   | 12                  |        |  |
| Continuous Source-Drain Diode Current              | T <sub>A</sub> = 25 °C | I <sub>S</sub>                    | 2.9 b, c            |        |  |
| Single Pulse Avalanche Current                     | . 0.111                | I <sub>AS</sub>                   | 7                   |        |  |
| Single Pulse Avalanche Energy                      | L = 0.1 mH             | E <sub>AS</sub>                   | 2.5                 | mJ     |  |
|                                                    | T <sub>C</sub> = 25 °C |                                   | 19                  |        |  |
| Martin or Brown Bladestine                         | T <sub>C</sub> = 70 °C | _                                 | 12                  | 147    |  |
| Maximum Power Dissipation                          | T <sub>A</sub> = 25 °C | P <sub>D</sub>                    | 3.5 <sup>b, c</sup> | W      |  |
|                                                    | T <sub>A</sub> = 70 °C |                                   | 2.2 b, c            |        |  |
| Operating Junction and Storage Temperature R       | Range                  | T <sub>J</sub> , T <sub>stg</sub> | -55 to 150          | 00     |  |
| Soldering Recommendations (Peak Temperatur         | re) <sup>d, e</sup>    | Ĭ                                 | 260                 | °C     |  |

| THERMAL RESISTANCE RATINGS       |              |                   |         |         |      |  |  |  |  |
|----------------------------------|--------------|-------------------|---------|---------|------|--|--|--|--|
| PARAMETER                        |              | SYMBOL            | TYPICAL | MAXIMUM | UNIT |  |  |  |  |
|                                  |              | R <sub>thJA</sub> | 28      | 36      | °C/W |  |  |  |  |
| Maximum Junction-to-Case (Drain) | Steady State | $R_{thJC}$        | 5.3     | 6.5     | C/VV |  |  |  |  |

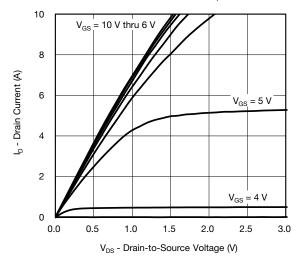
#### **Notes**

- a. Based on  $T_C = 25$  °C.
- Surface mounted on 1" x 1" FR4 board.
- See solder profile (<a href="www.vishav.com/doc?73257">www.vishav.com/doc?73257</a>). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

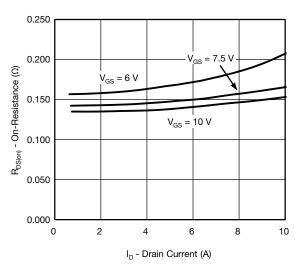
  Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components.

  Maximum under steady state conditions is 80 °C/W.

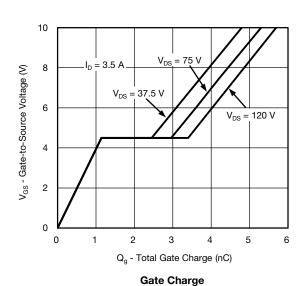
# Vishay Siliconix

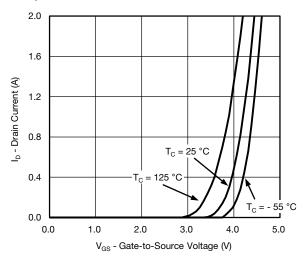

| Static         Drain-Source Breakdown Voltage         V <sub>DS</sub> V <sub>QS</sub> = 0 V, I <sub>D</sub> = 250 μA         150         -         -         V           V <sub>QSB</sub> Temperature Coefficient         AV <sub>QSBM</sub> /T <sub>J</sub> I <sub>D</sub> = 250 μA         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         1         m/V°C           Gate-Source Leakage         I class         V <sub>DS</sub> 150 V, V <sub>DS</sub> = 20 V, V <sub>DS</sub> = 20 V         -         -         1         1 0         n         A           Zero Gate Voltage Drain Current         I <sub>DSS</sub> V <sub>DS</sub> = 150 V, V <sub>DS</sub> = 20 V, V <sub>DS</sub> = 10 V         -         -         1.0         A           On-State Drain Current a         I <sub>D(DI)</sub> V <sub>DS</sub> = 10 V, V <sub>DS</sub> = 10 V         -         -         0.151         0.152         0.177         V <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C, unless otherwise noted) |                                               |                                                                        |      |       |       |       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|------|-------|-------|-------|--|--|--|
| Drain-Source Breakdown Voltage         V <sub>DS</sub> V <sub>GS</sub> = 0 V, I <sub>D</sub> = 250 μA         150         -         -         V           V <sub>DS</sub> Temperature Coefficient         ΔV <sub>DSPT</sub> J         I <sub>D</sub> = 250 μA         -         -         73         -         MV°C           Gate-Source Threshold Voltage         V <sub>DS</sub> = 10S, V <sub>VDS</sub> = 10 PA         2.5         -         3.5         V           Gate-Source Leakage         I <sub>BSS</sub> V <sub>DS</sub> = 0 V, V <sub>OS</sub> = 20 PA         2.5         -         3.5         V           Zero Gate Voltage Drain Current         I <sub>DSS</sub> V <sub>DS</sub> = 150 V, V <sub>OS</sub> = 0 V         -         -         ± 100         nA           Zero Gate Voltage Drain Current and D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PARAMETER                                                              |                                               |                                                                        | MIN. | TYP.  | MAX.  | UNIT  |  |  |  |
| Vos Temperature Coefficient         ΔVos(T) Δος(π) Temperature Coefficient)         ΔVos(π) Temperature Coefficient)         ΔVos(π) Temperature Coefficient)         ΔO(π) Sequent Temperature Coefficient         ΔΟ(π) Sequent Temperature Coefficient         ΔΩ(π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Static                                                                 |                                               |                                                                        | •    |       |       |       |  |  |  |
| Vos Temperature Coefficient         ΔVos(T) Δος(π) Temperature Coefficient)         ΔVos(π) Temperature Coefficient)         ΔVos(π) Temperature Coefficient)         ΔO(π) Sequent Temperature Coefficient         ΔΟ(π) Sequent Temperature Coefficient         ΔΩ(π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drain-Source Breakdown Voltage                                         | $V_{DS}$                                      | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                          | 150  | -     | -     | V     |  |  |  |
| Vosgen Temperature Coefficient         ΔV <sub>OSRM</sub> T <sub>J</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>DS</sub> Temperature Coefficient                                | $\Delta V_{DS}/T_{J}$                         |                                                                        | -    | 73    | -     | mV/°C |  |  |  |
| Caste-Source Leakage   Caste   Cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>GS(th)</sub> Temperature Coefficient                            | $\Delta V_{GS(th)}/T_J$                       | I <sub>D</sub> = 250 μA                                                | -    | -6    | -     |       |  |  |  |
| Cate-Source Leakage   IGBS   VDS = 0 V, VGS = ± 20 V   ± 100   nA     VDS = 150 V, VGS = 0 V, VGS = 0 V   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gate-Source Threshold Voltage                                          | V <sub>GS(th)</sub>                           | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                     | 2.5  | -     | 3.5   | V     |  |  |  |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gate-Source Leakage                                                    |                                               | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$                      | -    | -     | ± 100 | nA    |  |  |  |
| V <sub>DS</sub> = 150 V, V <sub>QS</sub> = 0 V, T <sub>J</sub> = 55 °C   -   -   10   V <sub>DS</sub> = 10 V   V <sub>DS</sub>   V <sub>DS</sub>   V <sub>DS</sub> = 10 V   V <sub>DS</sub> = 10 V   V <sub>DS</sub>   V <sub>DS</sub>   V <sub>DS</sub> = 10 V   V <sub>DS</sub> = 10 V   V <sub>DS</sub>   V <sub>DS</sub> | Zero Osto Vallego Bosto Oceani                                         |                                               | V <sub>DS</sub> = 150 V, V <sub>GS</sub> = 0 V                         | -    | -     | 1     | μA    |  |  |  |
| Vos. = 10 V, I <sub>D</sub> = 3 A   - 0.145   0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zero Gate Voltage Drain Current                                        | IDSS                                          | V <sub>DS</sub> = 150 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 55 °C | -    | -     | 10    |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On-State Drain Current <sup>a</sup>                                    | I <sub>D(on)</sub>                            | $V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$                        | 10   | -     | -     | Α     |  |  |  |
| V <sub>SS</sub> = 6 V, I <sub>D</sub> = 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                               | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 3 A                           | -    | 0.145 | 0.177 |       |  |  |  |
| Provided Transconductance a   gfs   V <sub>DS</sub> = 10 V, I <sub>D</sub> = 3 A   - 6   - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drain-Source On-State Resistance <sup>a</sup>                          | R <sub>DS(on)</sub>                           | V <sub>GS</sub> = 7.5 V, I <sub>D</sub> = 2 A                          | -    | 0.151 | 0.185 | Ω     |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |                                               | V <sub>GS</sub> = 6 V, I <sub>D</sub> = 1 A                            | -    | 0.165 | 0.250 |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Forward Transconductance a                                             | 9 <sub>fs</sub>                               | $V_{DS} = 10 \text{ V}, I_D = 3 \text{ A}$                             | -    | 6     | -     | S     |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dynamic <sup>b</sup>                                                   |                                               |                                                                        | •    |       |       |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Input Capacitance                                                      | C <sub>iss</sub>                              |                                                                        | -    | 230   | -     | pF    |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output Capacitance                                                     |                                               | $V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$       | -    | 47    | -     |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reverse Transfer Capacitance                                           | C <sub>rss</sub>                              |                                                                        | -    | 8     | -     |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T. 1.0.1.01                                                            | _                                             | $V_{DS} = 75 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$    | -    | 5.3   | 8     | nC    |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Gate Charge                                                      | $Q_g$                                         |                                                                        | -    | 4.3   | 6.5   |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate-Source Charge                                                     | $Q_{gs}$                                      | $V_{DS} = 75 \text{ V}, V_{GS} = 7.5 \text{ V}, I_D = 3.5 \text{ A}$   | -    | 1.2   | -     |       |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gate-Drain Charge                                                      |                                               |                                                                        | -    | 1.8   | -     |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output Charge                                                          |                                               | $V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$                          | -    | 8.5   | -     |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate Resistance                                                        | $R_{g}$                                       | f = 1 MHz                                                              | 0.5  | 2.3   | 4.6   | Ω     |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn-On Delay Time                                                     | t <sub>d(on)</sub>                            |                                                                        | -    | 5     | 10    |       |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rise Time                                                              | t <sub>r</sub>                                | $V_{DD} = 75 \text{ V}, R_1 = 29 \Omega,$                              | -    | 13    | 25    | ns    |  |  |  |
| Turn-On Delay Time $t_{d(on)}$ Rise Time $t_{r}$ $V_{DD} = 75 \text{ V}, R_{L} = 29 \Omega,$ $I_{D} \cong 2.6 \text{ A}, V_{GEN} = 6 \text{ V}, R_{g} = 1 \Omega$ $- 10 20$ $- 40 80$ $- 5 10$ $- 10 20$ Prain-Source Body Diode Characteristics  Continuous Source-Drain Diode Current $I_{S}$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn-Off Delay Time                                                    | t <sub>d(off)</sub>                           |                                                                        | -    | 10    | 20    |       |  |  |  |
| Turn-On Delay Time $t_{d(on)}$ Rise Time $t_r$ $Turn-Off Delay Time \qquad t_{d(off)}$ Fall Time $t_f$ $V_{DD} = 75 \text{ V}, R_L = 29 \Omega, I_D \cong 2.6 \text{ A}, V_{GEN} = 6 \text{ V}, R_g = 1 \Omega$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$ $- 10 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fall Time                                                              | t <sub>f</sub>                                |                                                                        | -    | 10    | 20    |       |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turn-On Delay Time                                                     | t <sub>d(on)</sub>                            |                                                                        | -    | 10    | 20    |       |  |  |  |
| Turn-Off Delay Time $t_{d(off)} = t_{d(off)} = t_{d(off)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rise Time                                                              | t <sub>r</sub>                                | $V_{DD} = 75 \text{ V}, R_1 = 29 \Omega,$                              | -    | 40    | 80    |       |  |  |  |
| Fall Time $t_f$ $-$ 10 20    Drain-Source Body Diode Characteristics    Continuous Source-Drain Diode Current $t_S$ $t_C = 25  ^{\circ}\text{C}$ $-$ 12 A Pulse Diode Forward Current $t_S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turn-Off Delay Time                                                    | t <sub>d(off)</sub>                           |                                                                        | -    | 5     | 10    |       |  |  |  |
| Continuous Source-Drain Diode Current $I_S$ $T_C = 25  ^{\circ}C$ 12 A Pulse Diode Forward Current (t = 100 $\mu$ s) $I_{SM}$ 10 A Body Diode Voltage $V_{SD}$ $I_S = 3.5  A$ - 0.9 1.2 $V_{SD}$ Body Diode Reverse Recovery Time $V_{rr}$ - 51 100 ns Body Diode Reverse Recovery Charge $V_{SD}$ $V_{S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fall Time                                                              |                                               |                                                                        | -    | 10    | 20    |       |  |  |  |
| Pulse Diode Forward Current (t = 100 $\mu$ s) $I_{SM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drain-Source Body Diode Characteristic                                 | s                                             |                                                                        |      |       |       |       |  |  |  |
| Pulse Diode Forward Current (t = $100  \mu s$ ) $I_{SM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Continuous Source-Drain Diode Current                                  | ous Source-Drain Diode Current I <sub>S</sub> |                                                                        | -    | -     | 12    |       |  |  |  |
| Body Diode Reverse Recovery Time $t_{rr}$ $I_F = 3.5 \text{ A, } dI/dt = 100 \text{ A/µs,}$ $ 100 \text{ ns}$ $ 100 \text{ ns}$ Reverse Recovery Fall Time $t_a$ $T_J = 25 \text{ °C}$ $ 43 \text{ -}$ $         -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pulse Diode Forward Current (t = 100 μs)                               | I <sub>SM</sub>                               |                                                                        | -    | -     | 10    | A     |  |  |  |
| Body Diode Reverse Recovery Charge $Q_{rr}$ $I_F = 3.5 \text{ A},  dI/dt = 100 \text{ A/µs}, \\ T_J = 25  ^{\circ}\text{C}$ $         -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Body Diode Voltage                                                     | $V_{SD}$                                      | I <sub>S</sub> = 3.5 A                                                 | -    | 0.9   | 1.2   | V     |  |  |  |
| Body Diode Reverse Recovery Charge $Q_{rr}$ $I_F = 3.5 \text{ A}$ , $dI/dt = 100 \text{ A/}\mu\text{s}$ , $I_F = 3.5 \text{ A}$ $I_F = 3.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Body Diode Reverse Recovery Time                                       |                                               |                                                                        | -    | 51    | 100   | ns    |  |  |  |
| Reverse Recovery Fall Time t <sub>a</sub> T <sub>J</sub> = 25 °C - 43 - ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Body Diode Reverse Recovery Charge                                     |                                               | $I_E = 3.5 \text{ A}, dI/dt = 100 \text{ A/us}.$                       | -    | 100   | 200   | nC    |  |  |  |
| ns ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reverse Recovery Fall Time                                             | <del> </del>                                  |                                                                        | -    | 43    | -     |       |  |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reverse Recovery Rise Time                                             | t <sub>b</sub>                                |                                                                        | -    | 8     | -     | ns    |  |  |  |

#### Notes

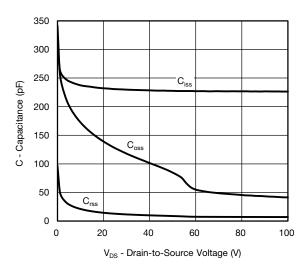

- a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

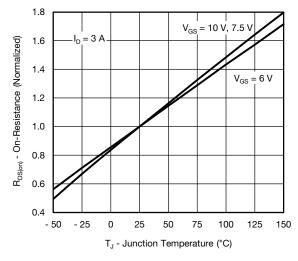



#### **Output Characteristics**

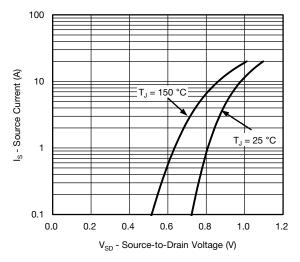


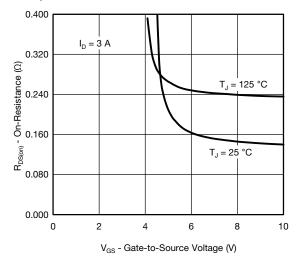

#### On-Resistance vs. Drain Current and Gate Voltage





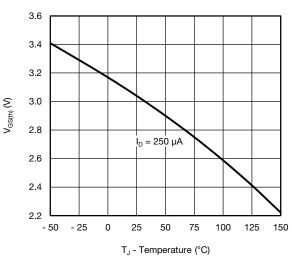

#### **Transfer Characteristics**

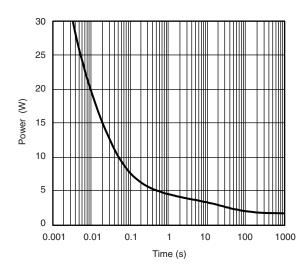




#### Capacitance



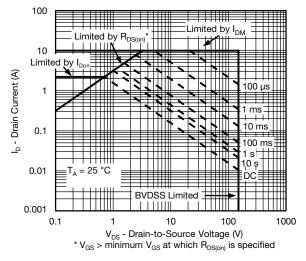
On-Resistance vs. Junction Temperature



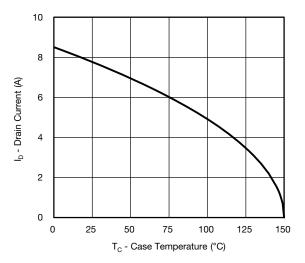





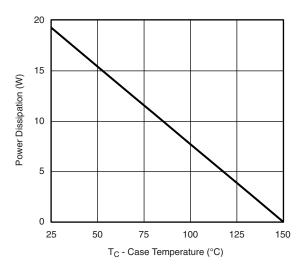

#### Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage





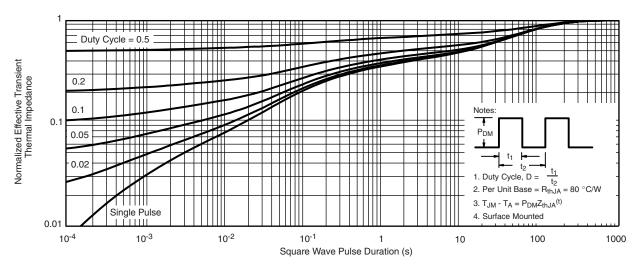

Threshold Voltage


Single Pulse Power, Junction-to-Ambient

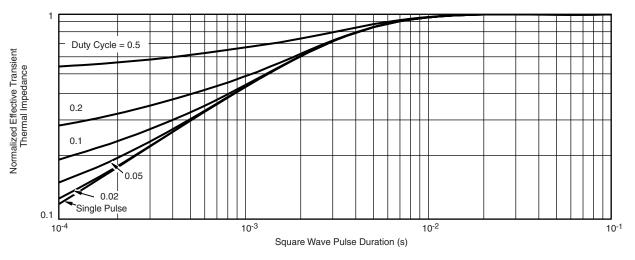


Safe Operating Area, Junction-to-Ambient




#### **Current Derating\***



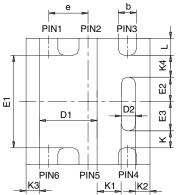

Power, Junction-to-Case

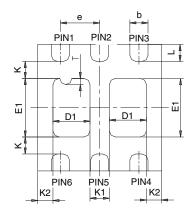
<sup>\*</sup> The power dissipation  $P_D$  is based on  $T_{J(max.)}$  = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





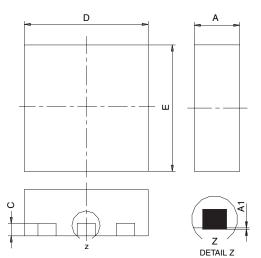
#### Normalized Thermal Transient Impedance, Junction-to-Ambient





Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg262925">www.vishay.com/ppg262925</a>.

Vishay Siliconix


### PowerPAK® SC70-6L





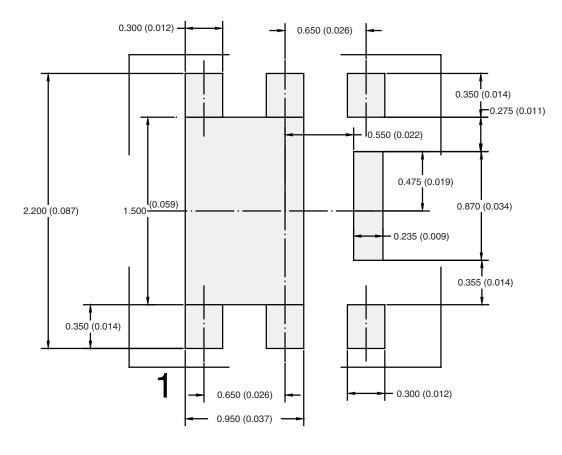
BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL



- All dimensions are in millimeters
   Package outline exclusive of mold flash and metal burr
   Package outline inclusive of plating

|          | SINGLE PAD                       |           |        |           |           |             | DUAL PAD  |           |           |           |           |       |  |
|----------|----------------------------------|-----------|--------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-------|--|
| DIM      | MILLIMETERS                      |           | INCHES |           |           | MILLIMETERS |           |           | INCHES    |           |           |       |  |
|          | Min                              | Nom       | Max    | Min       | Nom       | Max         | Min       | Nom       | Max       | Min       | Nom       | Max   |  |
| Α        | 0.675                            | 0.75      | 0.80   | 0.027     | 0.030     | 0.032       | 0.675     | 0.75      | 0.80      | 0.027     | 0.030     | 0.032 |  |
| A1       | 0                                | -         | 0.05   | 0         | -         | 0.002       | 0         | -         | 0.05      | 0         | -         | 0.002 |  |
| b        | 0.23                             | 0.30      | 0.38   | 0.009     | 0.012     | 0.015       | 0.23      | 0.30      | 0.38      | 0.009     | 0.012     | 0.015 |  |
| С        | 0.15                             | 0.20      | 0.25   | 0.006     | 0.008     | 0.010       | 0.15      | 0.20      | 0.25      | 0.006     | 0.008     | 0.010 |  |
| D        | 1.98                             | 2.05      | 2.15   | 0.078     | 0.081     | 0.085       | 1.98      | 2.05      | 2.15      | 0.078     | 0.081     | 0.085 |  |
| D1       | 0.85                             | 0.95      | 1.05   | 0.033     | 0.037     | 0.041       | 0.513     | 0.613     | 0.713     | 0.020     | 0.024     | 0.028 |  |
| D2       | 0.135                            | 0.235     | 0.335  | 0.005     | 0.009     | 0.013       |           |           |           |           |           |       |  |
| E        | 1.98                             | 2.05      | 2.15   | 0.078     | 0.081     | 0.085       | 1.98      | 2.05      | 2.15      | 0.078     | 0.081     | 0.085 |  |
| E1       | 1.40                             | 1.50      | 1.60   | 0.055     | 0.059     | 0.063       | 0.85      | 0.95      | 1.05      | 0.033     | 0.037     | 0.041 |  |
| E2       | 0.345                            | 0.395     | 0.445  | 0.014     | 0.016     | 0.018       |           |           |           |           |           |       |  |
| E3       | 0.425                            | 0.475     | 0.525  | 0.017     | 0.019     | 0.021       |           |           |           |           |           |       |  |
| е        |                                  | 0.65 BSC  |        |           | 0.026 BSC | ;           | 0.65 BSC  |           |           | 0.026 BSC |           |       |  |
| K        |                                  | 0.275 TYP | 1      |           | 0.011 TYP | 1           | 0.275 TYP |           |           | 0.011 TYP |           |       |  |
| K1       |                                  | 0.400 TYP | 1      |           | 0.016 TYP |             |           | 0.320 TYP |           |           | 0.013 TYP |       |  |
| K2       |                                  | 0.240 TYP | 1      | 0.009 TYP |           |             | 0.252 TYP |           | 0.010 TYP |           |           |       |  |
| К3       |                                  | 0.225 TYP | 1      | 0.009 TYP |           |             |           |           |           |           |           |       |  |
| K4       |                                  | 0.355 TYP |        | 0.014 TYP |           |             |           |           |           |           |           |       |  |
| L        | 0.175                            | 0.275     | 0.375  | 0.007     | 0.011     | 0.015       | 0.175     | 0.275     | 0.375     | 0.007     | 0.011     | 0.015 |  |
| Т        |                                  |           |        |           |           |             | 0.05      | 0.10      | 0.15      | 0.002     | 0.004     | 0.006 |  |
| FCN: C-0 | FCN: C-07431 – Rev. C. 06-Aug-07 |           |        |           |           |             |           |           |           |           |           |       |  |


DWG: 5934

Document Number: 73001 06-Aug-07

www.vishay.com



### RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Single



Dimensions in mm/(Inches)

Return to Index

ATTLICATION NOT



Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)

>>点击查看相关商品