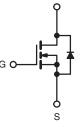
IRF730B

RoHS

COMPLIANT


Vishay Siliconix

D Series Power MOSFET

PRODUCT SUMMARY					
V_{DS} (V) at T_J max.	450				
R _{DS(on)} max. at 25 °C (Ω)	V _{GS} = 10 V 1.0				
Q _g max. (nC)	18				
Q _{gs} (nC)	3				
Q _{gd} (nC)	4				
Configuration	Single				

TO-220AB

N-Channel MOSFET

D

FEATURES

- Optimal Design
 - Low Area Specific On-Resistance
 - Low Input Capacitance (Ciss)
 - Reduced Capacitive Switching Losses
 - High Body Diode Ruggedness
 - Avalanche Energy Rated (UIS)
- Optimal Efficiency and Operation
 - Low Cost
 - Simple Gate Drive Circuitry
 - Low Figure-of-Merit (FOM): Ron x Qa
 - Fast Switching
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Note

Lead (Pb)-containing terminations are not RoHS-compliant. Exemptions may apply.

APPLICATIONS

- Consumer Electronics
- Displays (LCD or Plasma TV)
- Server and Telecom Power Supplies

 SMPS
- Industrial
 - Welding
 - weiding
 - Induction Heating
- Motor Drives
- Battery Chargers

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF730BPbF

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \degree C$, unless otherwise noted)						
PARAMETER	SYMBOL	LIMIT	UNIT			
Drain-Source Voltage	V _{DS}	400				
Gate-Source Voltage		N/	± 30	V		
Gate-Source Voltage AC (f > 1 Hz)	V _{GS}	30				
Continuous Drain Current (T _J = 150 °C)	V_{GS} at 10 V $T_C = 25 °C$	I _D	6			
	V_{GS} at 10 V $T_C = 100 \text{ °C}$		4	A		
Pulsed Drain Current ^a	I _{DM}	13				
Linear Derating Factor		0.8	W/°C			
Single Pulse Avalanche Energy ^b	E _{AS}	104	mJ			
Maximum Power Dissipation	PD	104	W			
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C			
Drain-Source Voltage Slope	n-Source Voltage Slope T _J = 125 °C		24	V/ns		
Reverse Diode dV/dt ^d	dV/dt	0.48	v/IIS			
Soldering Recommendations (Peak Temperature) for 10 s			300 ^c	°C		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 2.3 mH, R_g = 25 Ω , I_{AS} = 9.5 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D,$ starting T_J = 25 °C.

S12-1392-Rev. A, 18-Jun-12

Document Number: 91518

www.vishay.com

Vishay Siliconix

Static V _{GS} = 0 V, I _D = 250 µA 400 - - V_{DS} Imperature Coefficient $AV_{DS}T_J$ Reference to 25 °C, I _D = 250 µA - 0.53 - Gate-Source Threshold Voltage (N) V_{OS} (m) $V_{OS} = 250 µA$ 3 - 5 Gate-Source Leakage I GSS $V_{OS} = 30 V$ - - 1 Zero Gate Voltage Drain Current I DSS $V_{OS} = 400 V, V_{GS} = 0 V$ - - 1 Drain-Source On-State Resistance R DSIemi $V_{OS} = 10 V$ Is 3 A - 0.85 1.0 Drain-Source On-State Resistance R DSIemi $V_{OS} = 10 V$ Is 3 A - 1.7 - Dynamic Input Capacitance Ciss $V_{OS} = 0 V, V_{OS} = 0 V, V_{OS} = 10 V$ - 38 - Reverse Transfer Capacitance Cres $V_{OS} = 0 V, V_{OS} = 0 V to 320 V$ - 54 - Total Gate Charge Qg Qg V_{OS} = 10 V, R_{O} = 3 A, V_{OS} = 320 V - 12 24	THERMAL RESISTANCE RATINGS								
Maximum Junction-to-Case (Drain) R_{HJC} - 1.2 $^{9}C/W$ SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. Static Drain-Source Breakdown Voltage V _{DS} V _{GS} = 0 V, I ₂ = 250 µA 400 - - - Gate-Source Threshold Voltage (N) VOS V _{DS} = 400 V, I ₂ = 250 µA 400 - - + 100 Zero Gate-Source Leakage I _{QSS} V _{DS} = 400 V, V _{QS} = 0 V - - + 100 Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 400 V, V _{QS} = 0 V, V - - 10 Drain-Source On-State Resistance R _{DS(m)} V _{DS} = 10 V I = 3 A - 1.7 - Dynamic Uput Capacitance C _{Gas} V _{QS} = 0 V, V _{DS} = 0 V to 320 V - 38 - Input Capacitance C _{Qas} V _{DS} = 10 V, V _{DS} = 10 V, V _{DS} = 30 V, V_{DS} = 320 V - 44 - Intro- Delaya Time	PARAMETER	SYMBOL	TYP. MAX.			UNIT			
Maximum Junction-to-Case (Drain) R_{thJC} - 1.2 SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN TYP. MAX. Static Vos $V_{0S} = 0 V, I_D = 250 \mu A$ 400 - - Org. Temperature Coefficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 250 \mu A$ 3 - 5 Gate-Source Threshold Voltage (N) VOS VOS $V_{0S} = 250 \mu A$ 3 - 5 Gate-Source Threshold Voltage (N) VOS $V_{0S} = 30 V$ - - ± 100 Zaro Gate Voltage Drain Current IDSS $V_{0S} = 320 V, V_{0S} = 0 V$ - - 10 Drain-Source On-State Resistance $R_{DS(m)}$ $V_{0S} = 300 V, I_D = 3 A$ - 0.85 1.0 Output Capacitance C_{cos} $V_{DS} = 100 V, I_D = 3 A$ - 0.85 1.0 Dynamic Vos = 100 V, I_D = 3 A - 0.85 1.0 - 38 - Input Capacitance C_{cos} $V_{OS} = 100 V, I_D = 3 A$ - 1.7 - 38 -	Maximum Junction-to-Ambient	R _{thJA}	- 62			0000			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static VGS VGS VGS VGS 400 - - Drain-Source Breakdown Voltage VDS VDS VDS VDS - 0.53 - Gate-Source Threshold Voltage (N) VGS(th) VDS VDS 250 µA - 0.53 - Gate-Source Leakage IGSS VDS 250 µA 3 - 5 Gate-Source Leakage IGSS VDS 200 V - - 1 Zero Gate Voltage Drain Current IDSS VDS 400 V, VGS = 0 V, VDS = 3 A - 0.85 1.0 Drain-Source Con-State Resistance PCS VDS 10 V ID = 3 A - 0.85 1.0 Droward Transconductance Ges VDS = 100 V, ID = 3 A - 1.7 - Reverse Transfer Capacitance Cres VDS = 0 V, VDS =						MIN	тур	ΜΑΥ	UNIT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		STNIBOL	IES	CONDIT	10113	IVIIIN.		IVIAA.	UNIT
			1 v	0.1/1		400	T		
	•	-							V
Gate-Source Leakage I_{GSS} $V_{GS} = \pm 30 V$ - - ± 100 Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 400 V, V_{GS} = 0 V$ - - 1 Drain-Source On-State Resistance $R_{DS(on)}$ $V_{GS} = 10 V$ $I_D = 3 A$ - 0.85 1.0 Forward Transconductance g_{fs} $V_{DS} = 50 V, I_D = 3 A$ - 1.7 - Dynamic - $V_{GS} = 10 V$ $V_{SS} = 0 V, V_{DS} = 30 V, V_{DS} = 30 V$ - 311 - Output Capacitance C_{ciss} $V_{GS} = 0 V, V_{DS} = 100 V, I_D = 3 A$ - 311 - Output Capacitance C_{ciss} $V_{GS} = 0 V, V_{DS} = 100 V, I_D = 3 A$ - 311 - Reverse Transfer Capacitance, energy related ^a $C_{ci(r)}$ $V_{GS} = 0 V, V_{DS} = 0 V to 320 V$ - 44 - Effective output capacitance, time related ^b $C_{o(tr)}$ $V_{GS} = 10 V, V_{DS} = 320 V$ - 54 - Total Gate Charge Q_{gd} $V_{GS} = 10 V, I_D = 3 A, V_{DS} = 320 V$ - 11 22 <td>56 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>V/°C</td>	56 1								V/°C
Zero Gate Voltage Drain Current IDSS $V_{DS} = 400 V, V_{GS} = 0 V$ - - 1 Drain-Source On-State Resistance $R_{DS(on)}$ $V_{GS} = 10 V$ Ip = 3 A - 0.85 1.0 Forward Transconductance g_{fs} $V_{DS} = 50 V, I_{D} = 3 A$ - 1.7 - Dynamic Iput Capacitance C_{ciss} $V_{DS} = 100 V, T_{D} = 0 V to 320 V$ - 311 - Effective output capacitance, time related ¹⁰ $C_{o(tr)}$ $V_{GS} = 0 V, V_{DS} = 0 V to 320 V$ - 44 - Total Gate Charge Q_{gd} $V_{GS} = 10 V$ $I_{D} = 3 A, V_{DS} = 320 V$ - 9 18 Gate-Drain Charge Q_{gd} $V_{GS} = 10 V, R_{g} = 9, 1 \Omega$ - 11 22 - Turn-On Delay Time t_{10} $V_{GS} = 10 V, R_{g} = 9, 1 \Omega$ - 11 22 - 14 28 - 11 22 <td>3 ()</td> <td>V_{GS(th)}</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>V</td>	3 ()	V _{GS(th)}				-		-	V
Zero Gate Voltage Drain CurrentIDSS $V_{DS} = 320 \vee, V_{GS} = 0 \vee, T_J = 125 °C$ 10Drain-Source On-State Resistance $R_{DS(on)}$ $V_{GS} = 10 \vee$ $I_D = 3 A$ -0.851.0Forward Transconductance g_{fs} $V_{DS} = 50 \vee, I_D = 3 A$ -0.851.0DynamicInput Capacitance C_{itss} $V_{GS} = 0 \vee, V_D = 3 A$ -1.7-DynamicUnput Capacitance C_{ciss} $V_{GS} = 0 \vee, V_D = 3 A$ -311-Reverse Transfer Capacitance C_{ciss} $V_{GS} = 0 \vee, V_D = 100 \vee, V_D = 0 \vee, V_$	Gate-Source Leakage	I _{GSS}				-	-		nA
Vos 320 V, V _{GS} = 0 V, T _J = 125 °C - - 10 Drain-Source On-State Resistance $R_{DS(cn)}$ $V_{GS} = 10 V$ $I_D = 3 A$ - 0.85 1.0 Forward Transconductance g_{fs} $V_{GS} = 10 V$ $I_D = 3 A$ - 0.85 1.0 Dynamic Input Capacitance C_{iss} $V_{GS} = 0 V$, $V_{DS} = 50 V$, $I_D = 3 A$ - 1.7 - Output Capacitance C_{iss} $V_{GS} = 0 V$, $V_{DS} = 100 V$, $f = 1 MHz$ - 38 - Reverse Transfer Capacitance, energy related ³ $C_{o(tr)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V$ to 320 V - 44 - Effective output capacitance, time $C_{o(tr)}$ $V_{GS} = 10 V$ $V_{GS} = 320 V$ - 54 - Total Gate Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ - 44 - Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$, $V_{GS} = 10 V$, $R_g = 9.1 \Omega$ - 11 22 Turn-Off Delay Time tr t V_{GS} = 10 V, $R_g = 9.1 \Omega$ -	Zero Gate Voltage Drain Current	IDSS				-	-		μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	200				-			-
DynamicInput Capacitance C_{iss} $V_{GS} = 0 V$, $V_{DS} = 100 V$, $f = 1 MHz$ $ 311$ $-$ Output Capacitance C_{coss} $V_{DS} = 100 V$, $f = 1 MHz$ $ 38$ $-$ Reverse Transfer Capacitance C_{rss} $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ $ 444$ $-$ Effective output capacitance, time related ⁰ $C_{o(tr)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ $ 54$ $-$ Total Gate Charge Q_g $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ $ 9$ 18 Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ $ 44$ $-$ Turn-On Delay Time $t_{d(on)}$ t_r $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ $ 44$ $-$ Fall Time t_r T_r $ 44$ $ 44$ $-$ Turn-On Delay Time $t_{d(orf)}$ $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ $ 44$ $-$ Turn-Off Delay Time t_q T_r $ 44$ $ 111$ 22 Turn-Off Delay Time t_q T_r $ 14$ 28 $ 114$ 28 Fall Time t_r T_r $ 14$ 28 $ 14$ 28 Fall Time T_r T_r $ 1.9$ $ 1.9$ $ 24$ Diale Diode Forward Current I_S MO		R _{DS(on)}			_			-	Ω
Input Capacitance C_{iss} $V_{GS} = 0 V$, $V_{DS} = 100 V$, $f = 1 MHz$ -311-Output Capacitance C_{oss} $V_{DS} = 100 V$, $f = 1 MHz$ -38-Reverse Transfer Capacitance, energy related ^a $C_{o(er)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ -44-Effective output capacitance, time related ^b $C_{o(tr)}$ $V_{GS} = 0 V$, $V_{DS} = 0 V to 320 V$ -44-Total Gate Charge Q_g Q_g $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -918Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -918Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -918Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -918Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -918Gate-Drain Charge Q_{gd} $V_{GS} = 10 V$ $I_D = 3 A$, $V_{DS} = 320 V$ -1224Turn-On Delay Time $t_{d(off)}$ $V_{DS} = 400 V$, $I_D = 3 A$, $V_{GS} = 10 V$, $R_g = 9.1 \Omega$ -1122Fall Time t_f t_f -816Gate Input Resistance R_g $f = 1 MHz$, open drain-1.9-Drain-Source Body Diode Characteristics t_f -24Pulsed Diode Forward Current I_{SM} <td< td=""><td>Forward Transconductance</td><td>9_{fs}</td><td>V_{DS}</td><td>= 50 V, I_D</td><td>= 3 A</td><td>-</td><td>1.7</td><td>-</td><td>S</td></td<>	Forward Transconductance	9 _{fs}	V _{DS}	= 50 V, I _D	= 3 A	-	1.7	-	S
Output Capacitance C_{oss} $V_{DS} = 100 \text{ V},$ $f = 1 \text{ MHz}$ -38-Reverse Transfer Capacitance C_{rss} $V_{DS} = 100 \text{ V},$ $f = 1 \text{ MHz}$ -38-Effective output capacitance, energy related ^a $C_{o(er)}$ $V_{GS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V to } 320 \text{ V}$ -44-Effective output capacitance, time related ^b $C_{o(tr)}$ $V_{GS} = 0 \text{ V},$ $V_{DS} = 0 \text{ V to } 320 \text{ V}$ -54-Total Gate Charge Q_g $Gate-Drain ChargeQ_{gd}Gate-Drain ChargeV_{GS} = 10 \text{ V}I_D = 3 \text{ A}, V_{DS} = 320 \text{ V}-918Gate-Drain ChargeQ_{gd}Turn-On Delay Timet_{d(on)}t_{gis}V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega-1224Rise Timet_rV_{CS} = 10 \text{ V}, R_g = 9.1 \Omega-1428Fall Timet_f-1428Fall Timet_f-816Gate Input ResistanceR_gf = 1 \text{ MHz}, \text{ open drain}-1.9-Drain-Source Body Diode Characteristics-8166Pulsed Diode Forward CurrentI_{SM}MOSFET symbolshowing theintegral reversep - n junction diode24Diode Forward VoltageV_{SD}T_J = 25 ^{\circ}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}1.2Reverse Recovery Timet_rT_H = 25 ^{\circ}, I_S = 1S = 3A,236-$,	1	1			1	T	I	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance			$V_{GS} = 0 V$	3	-	311	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V _{DS} = 100 V,		-	38	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	7	-		
Effective output capacitance, time relatedb $C_{o(tr)}$ $V_{DS} = 0 V \text{ to } 320 V$ $ 54$ $-$ Total Gate Charge Q_g Q_{gs} $V_{GS} = 10 V$ $I_D = 3 \text{ A}, V_{DS} = 320 V$ $ 9$ 18 Gate-Drain Charge Q_{gd} Q_{gd} $I_D = 3 \text{ A}, V_{DS} = 320 V$ $ 4$ $-$ Turn-On Delay Time $t_{d(on)}$ $V_{GS} = 10 V$ $I_D = 3 \text{ A}, V_{DS} = 320 V$ $ 4$ $-$ Rise Time t_r $V_{DD} = 400 V, I_D = 3 \text{ A}, V_{DS} = 10 V$ $ 11$ 22 Turn-Off Delay Time $t_{d(off)}$ $V_{GS} = 10 V, R_g = 9.1 \Omega$ $ 14$ 28 Fall Time t_f $ 14$ 28 Gate Input Resistance R_g $f = 1 \text{ MHz}, open drain$ $ 1.9$ $-$ Drain-Source Body Diode Characteristics R_g $f = 1 \text{ MHz}, open drain$ $ 1.9$ $-$ Pulsed Diode Forward Current I_S $MOSFET symbol$ showing the integral reverse $p - n$ junction diode $ 24$ Diode Forward Voltage V_{SD} $T_J = 25 ^\circ$, $I_S = 3 \text{ A}, V_{GS} = 0 V$ $ 1.2$ Reverse Recovery Time t_r $T_I = 25 ^\circ$, $I_S = 18 \text{ A}$ $ 1.4 \text{ C}$		C _{o(er)}			-	44	-	pF	
Gate-Source Charge Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 3 \text{ A}, V_{DS} = 320 \text{ V}$ -3-Gate-Drain Charge Q_{gd} Q_{gd} -44-Turn-On Delay Time $t_{d(on)}$ T_r $V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}, V_{DS} = 320 \text{ V}$ -1224Rise Time t_r $V_{OD} = 400 \text{ V}, I_D = 3 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ -1122Fall Time t_f $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ -1428Fall Time t_f -1.9Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.9-Drain-Source Body Diode Characteristics66Pulsed Diode Forward Current I_{SM} MOSFET symbol showing the integral reverse $p - n$ junction diode24Diode Forward Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2		C _{o(tr)}			-	54	-		
Gate-Drain Charge Q_{gd} -4-Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_{f} Gate Input Resistance R_g Gate Input Resistance R_g Continuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diodeDiode Forward Current I_S Diode Forward Voltage V_{SD} Turn-Off Delay Time t_{rr} L< 28	Total Gate Charge	Qg				-	9	18	
Gate-Drain Charge Q_{gd} -4-Turn-On Delay Time $t_{d(on)}$ r $V_{DD} = 400 \text{ V}, \text{ I}_D = 3 \text{ A},$ -1224Rise Time t_r $V_{DD} = 400 \text{ V}, \text{ I}_D = 3 \text{ A},$ -1122Turn-Off Delay Time $t_{d(off)}$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 9.1 \Omega$ -1428Fall Time t_f -816Gate Input Resistance R_g $f = 1 \text{ MHz}, \text{ open drain}$ -1.9-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode6Diode Forward Voltage V_{SD} $T_J = 25 ^\circ$ C, $I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 24Diode Forward Voltage V_{SD} $T_J = 25 ^\circ$ C, $I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_{II} = 25 ^\circ$ C, $I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2	Gate-Source Charge	Q _{qs}	V _{GS} = 10 V	$V_{GS} = 10 \text{ V}$ $I_D = 3 \text{ A}, V_{DS} = 320 \text{ V}$		-	3	-	nC
$\begin{tabular}{ c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge					-	4	-	
Rise Time t_r $V_{DD} = 400 \text{ V}, \text{ I}_D = 3 \text{ A}, V_{GS} = 10 \text{ V}, \text{ R}_g = 9.1 \Omega$ $ 11$ 22 Turn-Off Delay Time $t_{d(off)}$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 9.1 \Omega$ $ 14$ 28 Fall Time t_f $ 8$ 16 Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain $ 1.9$ $-$ Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode $ 6$ Diode Forward Current I_{SM} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ $ 24$ Diode Forward Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ $ 1.2$ Reverse Recovery Time t_{rr} $T_L = 25 \text{ °C}, I_F = I_S = 3 \text{ A},$ $ 236$ $-$	Turn-On Delay Time					-	12	24	
Turn-Off Delay Time $t_{d(off)}$ $v_{DD} = 400 \text{ V}, \text{ ib} = 3 \text{ A},$ -1428Fall Time t_f r $R_g = 9.1 \Omega$ -816Gate Input Resistance R_g $f = 1 \text{ MHz}, \text{ open drain}$ -1.9-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode6Diode Forward Current I_{SM} $T_J = 25 \text{ °C}, I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_L = 25 \text{ °C}, I_F = I_S = 3 \text{ A},$ -236-	Rise Time	t _r	N .	400 \/ 1	- 2 A	-	11	22	
Fall Time t_f -816Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.9-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode6Pulsed Diode Forward Current I_{SM} $P - n$ junction diode24Diode Forward Voltage V_{SD} $T_J = 25 °C$, $I_S = 3 A$, $V_{GS} = 0 V$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 °C$, $I_F = I_S = 3 A$,-236-	Turn-Off Delay Time		V _{DD} V _{GS} =	= 400 v, 1 _D = 10 V, R _n =	= 9.1 Ω	-	14	28	ns
Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.9-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode6Pulsed Diode Forward CurrentIsM $\Gamma_J = 25 °C$, $I_S = 3 \text{ A}$, $V_{GS} = 0 \text{ V}$ 24Diode Forward Voltage V_{SD} $T_J = 25 °C$, $I_S = 3 \text{ A}$, $V_{GS} = 0 \text{ V}$ 1.2Reverse Recovery Time t_{rr} $T_J = 25 °C$, $I_S = 3 \text{ A}$, $V_{GS} = 0 \text{ V}$ -1.2	Fall Time			- do - ,y 2		-	8	16	1
Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse $p - n$ junction diode - - 6 Pulsed Diode Forward Current IsM IsM T_J = 25 °C, I_S = 3 A, V_{GS} = 0 V - - 24 Diode Forward Voltage V_{SD T_J = 25 °C, I_S = 3 A, V_{GS} = 0 V - - 1.2 Reverse Recovery Time trr T_L = 25 °C, I_F = I_S = 3 A, - 236 -	Gate Input Resistance	Ra	f = 1 MHz, open drain		-	1.9	-	Ω	
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode6Pulsed Diode Forward CurrentIsMIsM $r_{J} = 25 °C$, Is = 3 A, VGS = 0 V24Diode Forward VoltageVsDT_J = 25 °C, Is = 3 A, VGS = 0 V1.2Reverse Recovery TimetrrT_J = 25 °C, Is = 3 A,-236-	Drain-Source Body Diode Characterist		1	•					
Pulsed Diode Forward CurrentI I SMp - n junction diode24Diode Forward VoltageV SDT J = 25 °C, IS = 3 A, VGS = 0 V1.2Reverse Recovery TimetrrT J = 25 °C, IF = IS = 3 A,-236-			showing the integral reverse		-	-	6	_	
Reverse Recovery Time t_{rr} -236- $T_{L} = 25 \ ^{\circ}C, I_{F} = I_{S} = 3 \ A,$ -236-	Pulsed Diode Forward Current	I _{SM}			-	-	24	A	
Reverse Recovery Time t_{rr} -236- $T_{I} = 25 \ ^{\circ}C, I_{F} = I_{S} = 3 \ A,$ -236-	Diode Forward Voltage	V _{SD}	$T_{1} = 25 \text{ °C}, I_{S} = 3 \text{ A}, V_{GS} = 0 \text{ V}$		-	-	1.2	V	
$T_{1} = 25 \text{ °C}, I_{F} = I_{S} = 3 \text{ A},$	° °	-			-	236	-	ns	
$dI/dt = 100 \Delta/ue V_{B} = 20 V$,				-		-	μC	
Reverse Recovery Current I _{RBM}								A	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

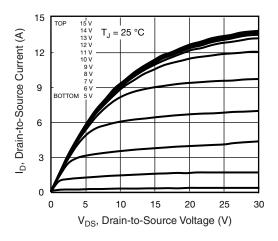


Fig. 1 - Typical Output Characteristics

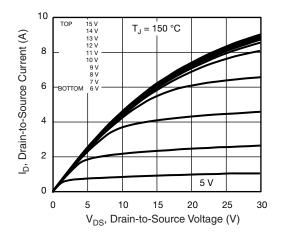


Fig. 2 - Typical Output Characteristics

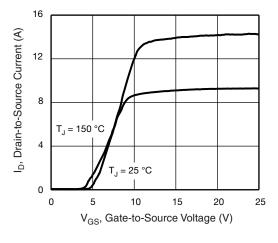


Fig. 3 - Typical Transfer Characteristics

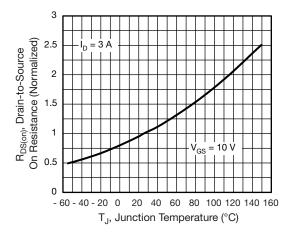


Fig. 4 - Normalized On-Resistance vs. Temperature

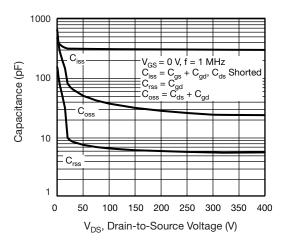
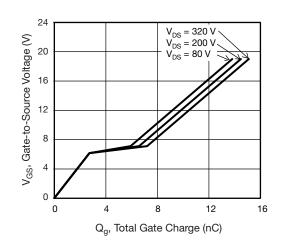
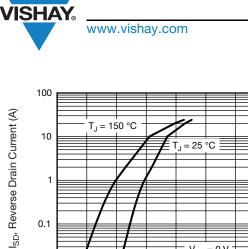



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage



Document Number: 91518

IRF730B

Vishay Siliconix

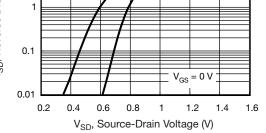


Fig. 7 - Typical Source-Drain Diode Forward Voltage

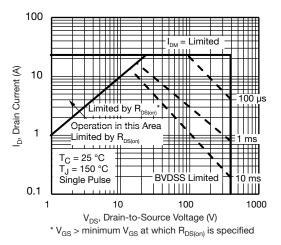


Fig. 8 - Maximum Safe Operating Area

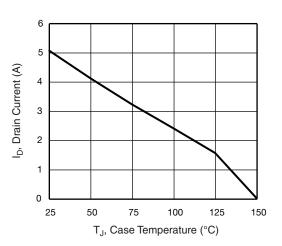


Fig. 9 - Maximum Drain Current vs. Case Temperature

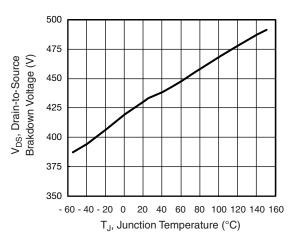


Fig. 10 - Temperature vs. Drain-to-Source Voltage

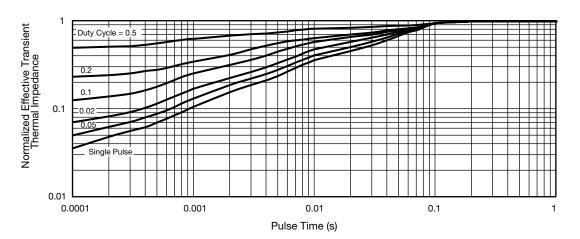
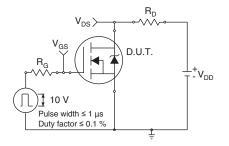


Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

S12-1392-Rev. A, 18-Jun-12


4

Document Number: 91518

For technical questions, contact: <u>hvm@vishay.com</u>
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

Vishay Siliconix

www.vishay.com

Fig. 12 - Switching Time Test Circuit

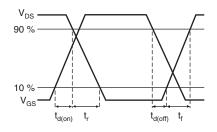


Fig. 13 - Switching Time Waveforms

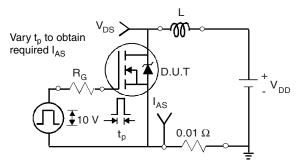


Fig. 14 - Unclamped Inductive Test Circuit

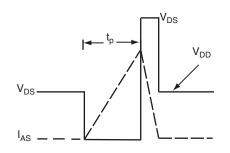


Fig. 15 - Unclamped Inductive Waveforms

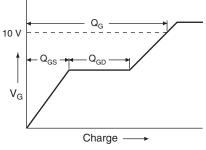


Fig. 16 - Basic Gate Charge Waveform

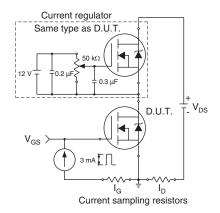
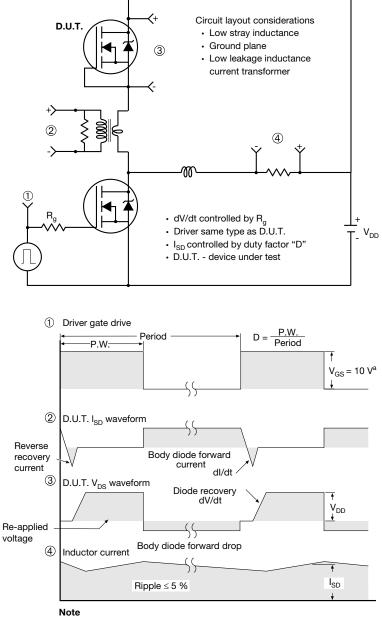
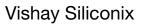
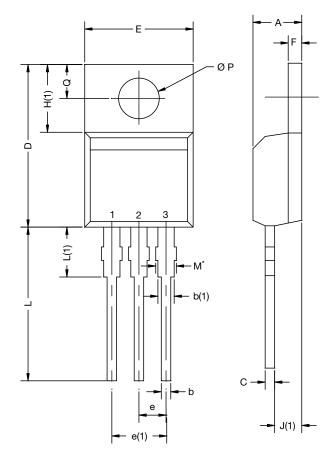



Fig. 17 - Gate Charge Test Circuit


Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices


Fig. 18 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91518.

VISHAY www.vishay.com

TO-220-1

DIM.	MILLIN	IETERS	INCHES			
DIIVI.	MIN.	MAX.	MIN.	MAX.		
А	4.24	4.65	0.167	0.183		
b	0.69	1.02	0.027	0.040		
b(1)	1.14	1.78	0.045	0.070		
С	0.36	0.61	0.014	0.024		
D	14.33	15.85	0.564	0.624		
Е	9.96	10.52	0.392	0.414		
е	2.41	2.67	0.095	0.105		
e(1)	4.88	5.28	0.192	0.208		
F	1.14	1.40	0.045	0.055		
H(1)	H(1) 6.10 6.71 0.240 0.264					
J(1)	2.41	2.92	0.095	0.115		
L	13.36	14.40	0.526	0.567		
L(1)	3.33	4.04	0.131	0.159		
ØΡ	3.53	3.94	0.139	0.155		
Q	2.54	3.00	0.100	0.118		
ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031						

Note

• $M^* = 0.052$ inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Package Picture					
ASE		Xi'an			
		IRF 9510 744K AB			

Revison: 14-Dec-15

Document Number: 66542

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)