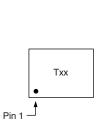

1.0 pC Charge Injection, 100 pA Leakage, 4-Channel Multiplexer

DESCRIPTION

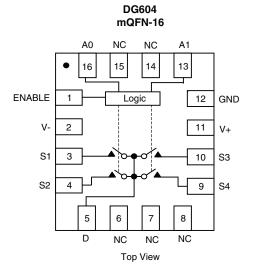
The DG604 is an analog 4-channel CMOS, multiplexer, designed to operate from a \pm 2.7 V to \pm 12 V single supply or from \pm 2.7 V to \pm 5 V, dual supplies. The DG604 is fully specified at \pm 3 V, \pm 5 V and \pm 5 V. All control logic inputs have guaranteed 2 V logic high limits when operating from \pm 5 V or \pm 5 V supplies and 1.4 V when operating from a 3 V supply. The DG604 switches conduct equally well in both directions and offer rail to rail analog signal handling. < 1 pC low charge injection, coupled with very low switch capacitance and leakage current makes this product ideal for use in precision instrumentation applications. Operating temperature range is specified from - 40 °C to + 125 °C. The DG604 is available in 14 lead TSSOP and the space saving 1.8 mm x 2.6 mm miniQFN package.

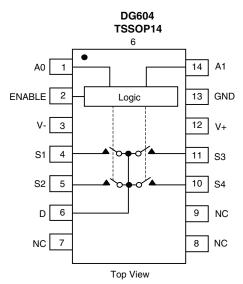
FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- Ultra low charge injection
 (± 1 pC, typ. over the full analog signal range)


FREE

- Low switch capacitance (C_{soff}, 3 pF typ.)
- Low $R_{DS(on)}$ 115 Ω max.
- Fully specified with single supply operation at 3 V, 5 V and dual supplies at ± 5 V
- Low voltage, 2.5 V CMOS/TTL compatible
- 400 MHz. 3 dB bandwidth
- Excellent isolation and crosstalk performance (typ. > - 60 dB at 10 MHz)
- Fully specified from 40 °C to 85 °C and 40 °C to + 125 °C
- 14 pin TSSOP and 16 pin miniQFN package (1.8 mm x 2.6 mm)
- Compliant to RoHS Directive 2002/95/EC


APPLICATIONS


- · High-end data acquisition
- · Medical instruments
- · Precision instruments
- High speed communications applications
- Automated test equipment
- Sample and hold applications

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: Txx for DG604 (miniQFN16) xx = Date/Lot Traceability Code

TRUTH TABLE			
Enable	Select	ed Input	On Switches
Input	A1	A0	DG604
L	Х	Х	All Switches Open
Н	L	L	D to S1
Н	L	Н	D to S2
Н	Н	L	D to S3
Н	Н	Н	D to S4

ORDERING INFORMA	ATION	
Temp. Range	Package	Part Number
40.00 to 405.008	14 pin TSSOP	DG604EQ-T1-E3
- 40 °C to 125 °C ^a	16 pin miniQFN	DG604EN-T1-E4

Notes:

a. - 40 °C to 85 °C datasheet limits apply.

ABSOLUTE MAXIMUM RAT	FINGS T _A = 25 °C, unless ot	herwise noted	
Parameter		Limit	Unit
V+ to V-		14	
GND to V-		7	\Box v
Digital Inputs ^a , V _S , V _D		(V-) - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	
Continuous Current (Any Terminal)		30	A
Peak Current, S or D (Pulsed 1 ms, 10 %	6 Duty Cycle)	100	mA
Storage Temperature		- 65 to 150	°C
Power Dissipation (Package) ^b	14 pin TSSOP ^c	450	m\\\
Power Dissipation (Package)	16 pin miniQFN ^{d, e}	525	mW
Thermal Desistance (Deskage)b	14 pin TSSOP	178	C/W
Thermal Resistance (Package) ^b	16 pin miniQFN	152	

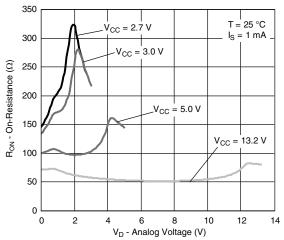
Notes:

- a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 5.6 mW/°C above 70 °C.
- d. Derate 6.6 mW/°C above 70 °C.
- e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

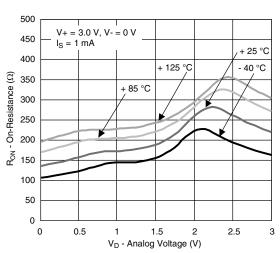
SPECIFICATIONS	FOR DU	JAL SUPPLIES							
		Test Conditions			- 40 °C t	o 125 °C	- 40 °C	to 85 °C	
Parameter	Symbol	Unless Otherwise Specified V+=5 V, V-=-5 V $V_{\text{IN A0, A1 and ENABLE}}=2 \text{ V, 0.8 V}^{\text{a}}$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		- 5	5	- 5	5	V
On-Resistance	R _{DS(on)}	I _S = 1 mA, V _D = -3 V, 0 V, +3 V	Room Full	70		115 160		115 140	
On-Resistance Match	ΔR _{ON}	$I_S = 1 \text{ mA}, V_D = \pm 3 \text{ V}$	Room Full	1		5 6.5		5 6.5	Ω
On-Resistance Flatness	R _{FLATNESS}	I _S = 1 mA, V _D = -3 V, 0 V, +3 V	Room Full	10		20 33		20 22	

		JAL SUPPLIES	1		1000	105.00	46.05		
		Test Conditions Unless Otherwise Specified V+ = 5 V, V- = - 5 V			- 40 °C t	o 125 °C	- 40 °C	to 85 °C	
Parameter	Symbol	$V_{IN A0, A1 \text{ and ENABLE}} = 2 \text{ V}, 0.8 \text{ V}^{a}$	Temp.b	Typ. ^c	Min.d	Max.d	Min.d	Max.d	Unit
Analog Switch		invito, in and Envise	-		L	I	L	l	
Switch Off	I _{S(off)}	V+ = 5.5 V, V- = - 5.5 V	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	
Leakage Current (for 14 pin TSSOP)	I _{D(off)}	$V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	
Channel On Leakage Current (for 14 pin TSSOP)	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V, $V_S = V_D = \pm 4.5 \text{ V}$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	nA
Switch Off	I _{S(off)}	V+ = 5.5 V, V- = - 5.5 V	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	IIA
Leakage Current (for 16 pin miniQFN)	I _{D(off)}	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}$	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	
Channel On Leakage Current (for 16 pin miniQFN)	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V, $V_S = V_D = \pm 4.5 \text{ V}$	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	
Digital Control									
Input Current, V _{IN} Low	I _{IL}	V _{IN A0, A1 and ENABLE} Under Test = 0.8 V	Full	0.005	- 0.1	0.1	- 0.1	0.1	
Input Current, V _{IN} High	I _{IH}	V _{IN A0, A1 and ENABLE} Under Test = 2 V	Full	0.005	- 0.1	0.1	- 0.1	0.1	μΑ
Input Capacitance ^e	C _{IN}	f = 1 MHz	Room	3.4					pF
Dynamic Characteristics					1	l	<u> </u>	l	
Transition Time	t _{TRANS}	$V_{S(CLOSE)} = 3 \text{ V, } V_{S(OPEN)} = 0 \text{ V,}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	Room Full	20		70 105		70 80	
Turn-On Time	t _{ON}	$R_L = 300 \Omega, C_L = 35 pF$	Room Full	16		60 90		60 65	no
Turn-Off Time	t _{OFF}	V _S = ± 3 V	Room Full	15		52 76		52 56	ns
Break-Before-Make Time Delay	t _D	$V_S = 3 V$ $R_L = 300 \Omega, C_L = 35 pF$	Room Full	15	10		10		
Charge Injection ^e	Q	$V_g = 0 \text{ V, R}_g = 0 \Omega, C_L = 1 \text{ nF}$	Room	0.7					рC
Off Isolation ^e	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$	Room	- 72					dB
Bandwidth ^e	BW	$R_L = 50 \Omega$	Room	400					MHz
Channel-to-Channel Crosstalk ^e	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$	Room	- 81					dB
Source Off Capacitance ^e	C _{S(off)}		Room	2.7					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	7.3					pF
Channel On Capacitance ^e	C _{D(on)}		Room	13.8					
Total Harmonic Distortion ^e	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.01					%
Power Supplies									
Power Supply Current	l+		Room Full	0.001		0.5 1		0.5 1	
Negative Supply Current	l-	$V_{IN} = 0 V$, or V+	Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1		μΑ
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1		

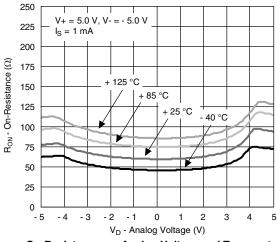
		Test Conditions			- 40 °C t	o 125 °C	- 40 °C	to 85 °C	
		Unless Otherwise Specified $V+=5 V, V-=0 V$							1
Parameter	Symbol	$V_{IN A0, A1 and ENABLE} = 2 V, 0.8 V^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch		,			•	•			
Analog Signal Range ^e	V_{ANALOG}		Full			5		5	٧
On-Resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = +3.5 \text{ V}$	Room Full	120		170 250		170 200	Ω
On-Resistance Match	ΔR_{ON}	$I_S = 1 \text{ mA}, V_D = +3.5 \text{ V}$	Room Full	3		5 12		5 10	32
Switch Off Leakage Current	I _{S(off)}	V+ = 5.5 V, V- = 0 V	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	
(for 14 pin TSSOP)	I _{D(off)}	$V_D = 1 \text{ V}/4.5 \text{ V}, V_S = 4.5 \text{ V}/1 \text{ V}$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	
Channel On Leakage Current (for 14 pin TSSOP)	$I_{D(on)}$	V+ = 5.5 V, V- = 0 V $V_S = V_D = 1 V/4.5 V$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5	
Switch Off Leakage Current	I _{S(off)}	V+ = 5.5 V, V- = - 5.5 V	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	nA
(for 16 pin miniQFN)	I _{D(off)}	$V_D = 1 \text{ V}/4.5 \text{ V}, V_S = 4.5 \text{ V}/1 \text{ V}$	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	
Channel On Leakage Current (for 16 pin miniQFN)	I _{D(on)}	V+ = 5.5 V, V- = 0 V, $V_S = V_D = 1 \text{ V}/4.5 \text{ V}$	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	
Digital Control									
Input Current, V _{IN} Low	ΙL	V _{IN A0, A1 and ENABLE} Under Test = 0.8 V	Full	0.005	- 0.1	0.1	- 0.1	0.1	
Input Current, V _{IN} High	I _H	V _{IN A0, A1 and ENABLE} Under Test = 2 V	Full	0.005	- 0.1	0.1	- 0.1	0.1	μΑ
Input Capacitance	C _{IN}	f = 1 MHz	Room	4.3					pF
Dynamic Characteristics									
Transition Time	t _{TRANS}		Room Full	36		75 120		75 95	
Enable Turn-On Time	t _{ON(EN)}	$V_{S(CLOSE)} = 3 \text{ V}, V_{S(OPEN)} = 0 \text{ V},$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	Room Full	30		70 102		70 80	ns
Enable Turn-Off Time	t _{OFF(EN)}		Room Full	17		47 88		47 63	113
Break-Before-Make-Time	t _{BMM}		Room Full	23	5		5		
Charge Injection	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_{GEN} = 0 V$	Full	0.15					рC
Off-Isolation ^e	OIRR	$f = 10 \text{ MHz}, R_L = 50 \Omega, C_L = 5 \text{ pF}$	Room	- 58					dB
Crosstalk ^e	X _{TALK}	_	Room	- 81					ub.
Bandwidth ^e	BW	$R_L = 50 \Omega$	Room	330					MHz
Total Harmonic Distortion	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.009					%
Source Off Capacitance ^e	C _{S(off)}			3.1					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	11.6					pF
Channel On Capacitance ^e	C _{D(on)}			16.2					1
Power Supplies	<u>, , ,</u>		L	L					
Power Supply Current	l+		Room Full	0.001		0.5 1		0.5 1	
Negative Supply Current	l-	V _{IN} = 0 V, or V+	Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1		μΑ
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1		

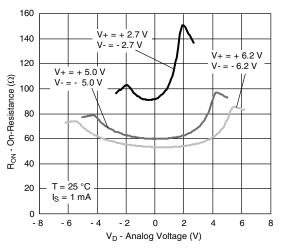


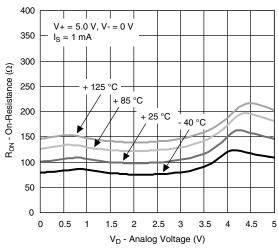
		Test Conditions			- 40 °C to	+ 125 °C	- 40 °C to	°C to + 85 °C		
		Unless Otherwise Specified							1	
Parameter	Symbol	V+ = 3 V, V- = 0 V $V_{IN A0, A1 and ENABLE} = 1.4 V, 0.6 V^a$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit	
Analog Switch	Cymbol	VIN AU, A1 and ENABLE — 1.4 V, 0.0 V	remp.	iyp.	141111.	WIUX.	141111	wax.	1 0	
Analog Signal Range ^e	V _{ANALOG}		Full			3		3	V	
		1 4 4 4 .5 ./.	Room	200		245		245	+	
On-Resistance	R _{DS(ON)}	$I_S = 1 \text{ mA}, V_D = + 1.5 \text{ V}$	Full			325		290	Ω	
On-Resistance Match	ΔR _{ON}	$I_S = 1 \text{ mA}, V_D = + 1.5 \text{ V}$	Room Full	5		6 13		11 6	32	
Switch Off Leakage Current	I _{S(off)}	V+ = 3 V, V- = 0 V	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5		
(for 14 pin TSSOP)	I _{D(off)}	$V_D = 1 \text{ V/3 V}, V_S = 3 \text{ V/1 V}$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5		
Channel On Leakage Current (for 14 pin TSSOP)	I _{D(on)}	V+ = 3 V, V- = 0 V $V_S = V_D = 1 V/3 V$	Room Full	± 0.01	- 0.1 - 18	0.1 18	- 0.1 - 0.5	0.1 0.5		
Switch Off Leakage Current	I _{S(off)}	V+ = 3.3 V, V- = 0 V	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2	nA	
(for 16 pin miniQFN)	I _{D(off)}	$V_D = 1 \text{ V/3 V}, V_S = 3 \text{ V/1 V}$	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2		
Channel On Leakage Current (for 16 pin miniQFN)	I _{D(on)}	V+ = 3.3 V, V- = 0 V V _D = 1 V/3 V, V _S = 3 V/1 V	Room Full	± 0.01	- 1 - 18	1 18	- 1 - 2	1 2		
Digital Control										
Input Current, V _{IN} Low	ΙL	V _{IN A0, A1 and ENABLE} Under Test = 0.6 V	Full	0.005	- 1	1	- 1	1		
Input Current, V _{IN} High	I _H	V _{IN A0, A1 and ENABLE} Under Test = 1.4 V	Full	0.005	- 1	1	- 1	1	- μA	
Input Capacitance	C _{IN}	f = 1 MHz	Room	4.3					рF	
Dynamic Characteristics										
Transition Time	t _{TRANS}		Room Full	95		130 190		130 160		
Enable Turn-On Time	t _{ON(EN)}	$V_{S(CLOSE)} = 3 \text{ V}, V_{S(OPEN)} = 0 \text{ V},$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	Room Full	77		108 161		108 131	ns	
Enable Turn-Off Time	t _{OFF(EN)}		Room Full	35		76 112		76 88	113	
Break-Before-Make-Time	t _{BMM}		Room Full	45	5		5			
Charge Injection	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_{GEN} = 0 V$	Full	0.1					рC	
Off-Isolation ^e	OIRR	$f = 10 \text{ MHz}, R_L = 50 \Omega, C_L = 5 \text{ pF}$	Room	- 58					dB	
Crosstalke	X _{TALK}		Room	- 90					ub.	
Bandwidth ^e	BW	$R_L = 50 \Omega$	Room	290					MHz	
Total Harmonic Distortion	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.09					%	
Source Off Capacitance ^e	C _{S(off)}			3.1						
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	11.7					pF	
Channel On Capacitance ^e	C _{D(on)}			16.5						
Power Supplies			L	l		l				
Power Supply Current	l+		Room Full	0.001		0.5 1		0.5 1		
Negative Supply Current	l-	V _{IN} = 0 V, or V+	Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1		μΑ	
Ground Current	I _{GND}		Room Full	- 0.001	- 0.5 - 1		- 0.5 - 1			

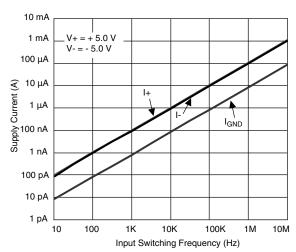

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY

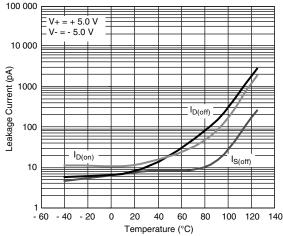

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

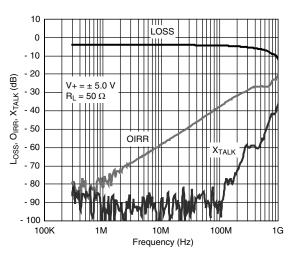

On-Resistance vs. V_D (Single Supply Voltage)

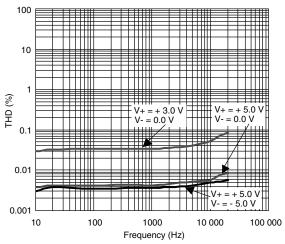

On-Resistance vs. Analog Voltage and Temperature

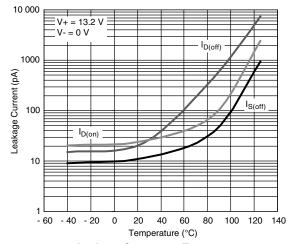

On-Resistance vs. Analog Voltage and Temperature

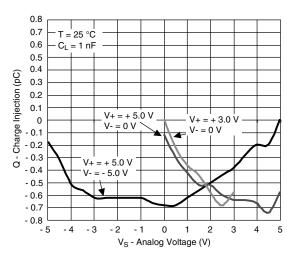
On-Resistance vs. V_D (Dual Supply Voltage)

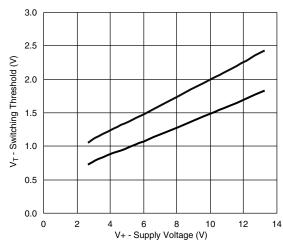

On-Resistance vs. Analog Voltage and Temperature


Supply Current vs. Input Switching Frequency


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage Current vs. Temperature


Insertion Loss, Off-Isolation, Crosstalk vs. Frequency


Total Harmonic Distortion vs. Frequency

Leakage Current vs. Temperature

Charge Injection vs. Analog Voltage

Switching Threshold vs. Supply Voltage

TEST CIRCUITS

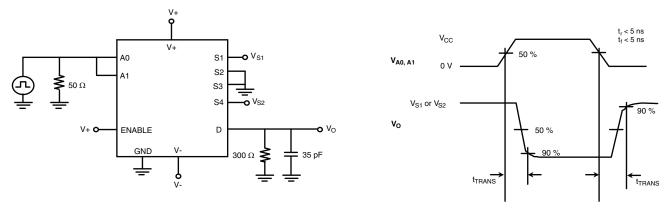


Figure 1. Transition Time

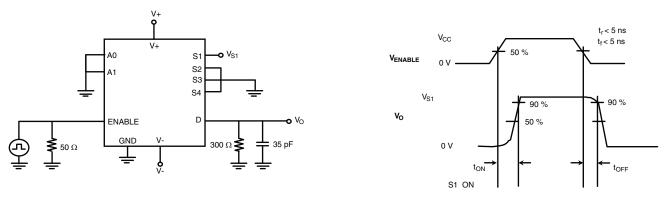


Figure 2. Enable Switching Time

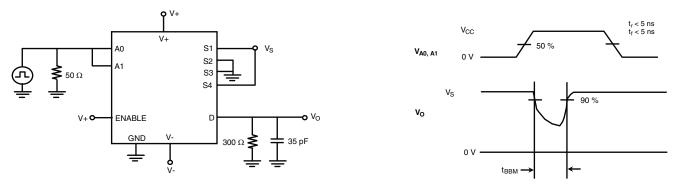


Figure 3. Break-Before-Make

TEST CIRCUITS

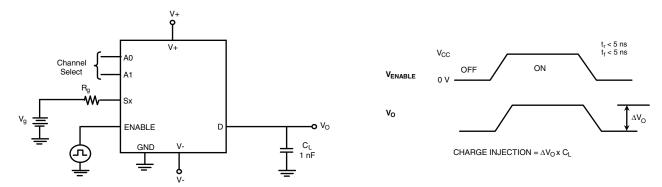


Figure 4. Charge Injection

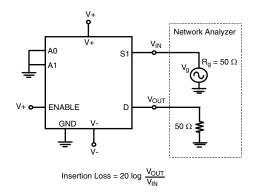


Figure 5. Insertion Loss

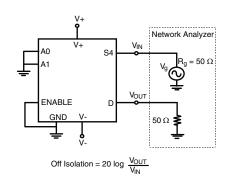


Figure 6. Off-Isolation

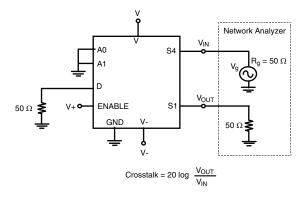


Figure 7. Crosstalk

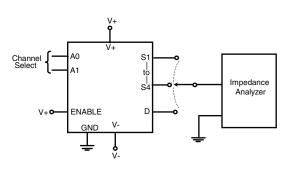
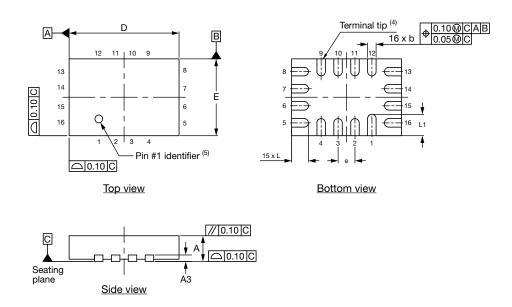



Figure 8. Source/Drain Capacitance

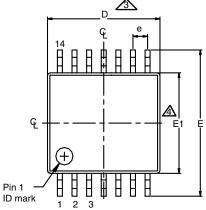
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?69934.

Document Number: 69934 S11-1429-Rev. C, 18-Jul-11

Thin miniQFN16 Case Outline

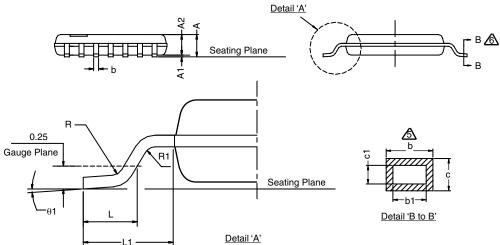
DIMENSIONS		MILLIMETERS (1)			INCHES		
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0	-	0.05	0	-	0.002	
A3		0.15 ref.			0.006 ref.		
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.50	2.60	2.70	0.098	0.102	0.106	
е		0.40 BSC		0.016 BSC			
E	1.70	1.80	1.90	0.067	0.071	0.075	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.45	0.50	0.55	0.018	0.020	0.022	
N (3)	16			16			
Nd ⁽³⁾	4			4			
Ne ⁽³⁾		4			4		

Notes


- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

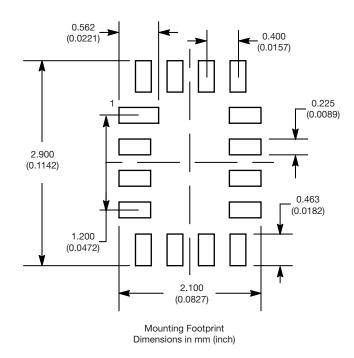
DWG: 6023



14L TSSOP

Notes:

- 1. All dimensions are in millimeters (angles in degrees)
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982
- ⚠ Dimension 'D' does not include mold flash, protrusions or gate burrs
- Dimension 'E1' does not include internal flash or protrusion
- ⚠ Dimension 'b' does not include dambar protrusion ♠ Cross section B to B to be determined at 0.10 mm to 0.25 mm from the lead tip


SYMBOL	MINIMUM	NOMINAL	MAXIMUM
А	-	-	1.20
A1	0.05	-	0.15
A2	0.80	0.90	1.05
D	4.9	5.0	5.1
E1	4.3	4.4	4.5
Е	6.2	6.4	6.6
L	0.45	0.60	0.75
R	0.09	-	-
R1	0.09	-	-
b	0.19	-	0.30
b1	0.19	0.22	0.25
С	0.09	-	0.20
c1	0.09	-	0.16
θ1	0°	-	8°
L1		1.0 ref.	•
е		0.65 BSC	

DWG: 5962

Document Number: 69938 Revision: 14-Jan-08

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)