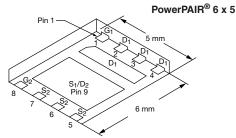
New Product

SiZ900DT

RoHS

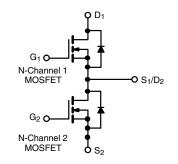

COMPLIANT HALOGEN

FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY						
	V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A)	Q _g (Typ.)		
Channel-1	30	0.0072 at V_{GS} = 10 V	24 ^a	13.5 nC		
Channel-T	30	0.0092 at V _{GS} = 4.5 V	24 ^a	13.5110		
Channel-2	20	0.0039 at V _{GS} = 10 V	28 ^a	34 nC		
Channel-2	30	0.0047 at V _{GS} = 4.5 V	28 ^a	34 NC		


Ordering Information: SiZ900DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFETs
- 100 % R_g and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Notebook System Power
- POL
- Synchronous Buck Converter

ABSOLUTE MAXIMUM RATINGS	(T _A = 25 °C, unle	ess otherwise	e noted)		
Parameter	Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V _{DS}	30		V
Gate-Source Voltage		V _{GS}	± 2	v	
	T _C = 25 °C		24 ^a	28 ^a	
Continuous Drain Current ($T_1 = 150 \ ^{\circ}C$)	T _C = 70 °C		24 ^a	28 ^a	
Continuous Drain Current $(1_j = 150^{\circ} C)$	T _A = 25 °C	I _D	19 ^{b, c}	28 ^{b, c}	
	T _A = 70 °C		15.5 ^{b, c}	22 ^{b, c}	А
Pulsed Drain Current		I _{DM}	90	110	A
Continuous Source Drain Diode Current	T _C = 25 °C	la la	24 ^a	28 ^a	
Continuous Source Drain Diode Current	T _A = 25 °C	I _S	3.8 ^{b, c}	4.3 ^{b, c}	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	20	35	
Single Pulse Avalanche Energy		E _{AS}	20	61	mJ
	T _C = 25 °C		48	100	
Maximum Power Dissipation	T _C = 70 °C	- P _D	31	64	W
	T _A = 25 °C		4.6 ^{b, c}	5.2 ^{b, c}	vv
	T _A = 70 °C		3 ^{b, c}	3.3 ^{b, c}	
Operating Junction and Storage Temperature Range	ge	T _J , T _{stg}	- 55 to 150		*0
Soldering Recommendations (Peak Temperature) ^{d, e}			26	60	°C

THERMAL RESISTANCE RATINGS

			Char	nel-1	Char	inel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	22	27	19	24	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	2.1	2.6	1	1.25	0/11

Notes:

a. Package limited.b. Surface mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

f. Maximum under steady state conditions is 62 °C/W for channel-1 and 55 °C/W for channel-2.

Document Number: 67344 S11-2380-Rev. C, 28-Nov-11 This document is

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOC Downloaded From Oneyac.com 3CLA www.vishay.com

1

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static				1	1			
		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	Ch-1	30				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	Ch-2	30			V	
	N/ /T	I _D = 250 μA	Ch-1		32			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		32			
	м т	I _D = 250 μA	Ch-1		- 6		mv/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 6.5			
Cata Threshold Valtage	N/	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Ch-1	1.2		2.4	V	
Gate Threshold Voltage	VGS(th)	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Ch-2	1		2.2	v	
Gate Source Leakage	loss	$V_{DS} = 0 V, V_{GS} = \pm 20 V$	Ch-1			± 100	nΔ	
Gale Source Leakage	GSS	$V_{\rm DS} = 30 \text{ V}, \text{ V}_{\rm GS} = 120 \text{ V}$	Ch-2			± 100		
	e Threshold Voltage $V_{GS(th)}$ V e Source Leakage I_{GSS} V_{I} o Gate Voltage Drain Current I_{DSS} $V_{DS} =$ $V_{DS} =$ $V_{DS} =$ $V_{DS} =$ State Drain Current ^b $I_{D(on)}$ V n-Source On-State Resistance ^b $R_{DS(on)}$ V vard Transconductance ^b g_{fs} V		Ch-1			1		
Zero Gate Voltage Drain Current	Inco	$V_{DS} = 30 V, V_{GS} = 0 V$	Ch-2			1		
Zero Gale Voltage Drain Gurrent	'DSS	V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C	Ch-1			5	μΛ	
		V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C	Ch-2			5	V 2.4 V ± 100 nA 1 µA 5 A 0.0072 0 0.0039 Ω 0.0072 0 0.0039 Ω 0.0047 S 0.0047 S 110 21 51 nC 45 110 21 51 51 nC 4.8	
	I= /	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	Ch-1	20			V 4 V 4 V 4 V 2 000 nA 1 1 1 1 5 A 072 039 092 047 A 072 039 092 047 S 5 10 1 1 nC 8	
On-State Drain Current ^b	'D(on)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	25			А	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19.4 \text{ A}$	Ch-1		0.0059	0.0072		
- · · · · · · · · · · · · · · · · · · ·		V _{GS} = 10 V, I _D = 20 A	Ch-2		0.0032	0.0039		
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 17.2 \text{ A}$	Ch-1		0.0075	0.0092	2	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	Ch-2		0.0038	0.0047		
b	~	V _{DS} = 10 V, I _D = 19.4 A Ch-			76		·	
Forward Transconductance ^D	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		120		S	
Dynamic ^a			•					
Input Capacitance	C _{iss}		Ch-1		1830			
Input Capacitance	Uiss	Channel-1 V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Ch-2		4900			
Output Capacitance	C _{oss}	$v_{\rm DS} = 15$ v, $v_{\rm GS} = 0$ v, $1 = 1$ with	Ch-1		300		рF	
	- 033	Channel-2	Ch-2		710			
Reverse Transfer Capacitance	C _{rss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Ch-1		120			
· · · · · · · · · · · · · · · · · · ·		V 15 V V 10 V I 10 4 A	Ch-2		280	45	—	
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 19.4 \text{ A}$	Ch-1		29	-		
Total Gate Charge	Q _g	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 20 A	Ch-2		73		nC	
		Channel-1	Ch-1		13.5			
	_	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 19.4 \text{ A}$	Ch-2 Ch-1		34 5.8	51		
Gate-Source Charge	Q _{gs}		Ch-1 Ch-2		5.8			
		Channel-2	Ch-1		3.1			
Gate-Drain Charge	Q _{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	Ch-2		7.3		-	
			Ch-1	0.5	2.4	4.8		
Gate Resistance	R _g	f = 1 MHz	Ch-2	0.2	+	1.8	Ω	

Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

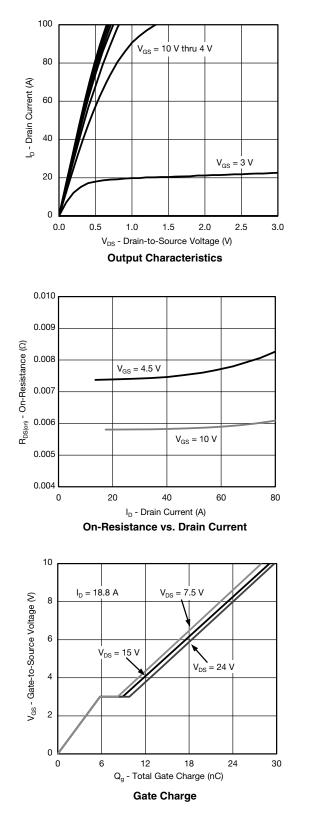
www.vishay.com 2

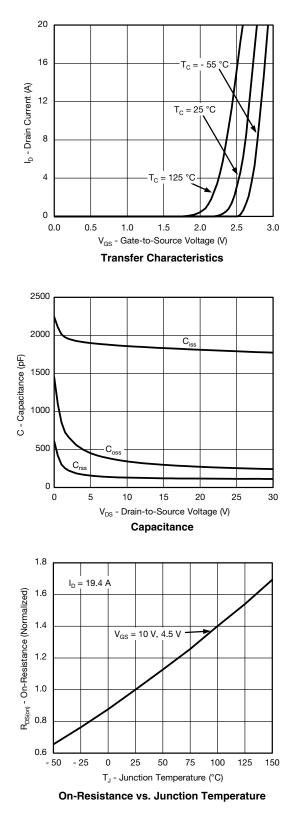
Document Number: 67344 S11-2380-Rev. C, 28-Nov-11

Vishay Siliconix

Parameter	Symbol		Min.	Тур.	Max.	Unit	
Dynamic ^a		·					
Turn-On Delay Time	t _{d(on)}	Observald	Ch-1		20	40	
	•u(on)	Channel-1 V _{DD} = 15 V, R _I = 1.5 Ω	Ch-2		35	70	
Rise Time	tr	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_a = 1 \Omega$	Ch-1		10	20	
			Ch-2		10	20	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		25	50	
	-()	V_{DD} = 15 V, R_L = 1.5 Ω	Ch-2		35	70	
Fall Time	t _f	$I_D \cong$ 10 A, V_{GEN} = 4.5 V, R_g = 1 Ω	Ch-1		10	20	
			Ch-2 Ch-1		10 15	20	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1 Ch-2		15	30 30	
		V_{DD} = 15 V, R_L = 1.5 Ω	Ch-1		10	20	
Rise Time	Rise Time $t_r \qquad I_D \cong t_r$		Ch-2		7	15	-
		Channel-2 V _{DD} = 15 V, R _I = 1.5 Ω			30	60	
Turn-Off Delay Time	t _{d(off)}				40	80	
		$I_D \cong 10 \text{ A}, V_{\text{GEN}} = 10 \text{ V}, \text{R}_{\text{g}} = 1 \Omega$	Ch-1		10	20	1
Fall Time	t _f		Ch-2		10	20	
Drain-Source Body Diode Characteristic	cs		1	1	L		
Continuous Source-Drain Diode Current	١ _s	T _C = 25 °C	Ch-1			24	
Continuous Cource Drain Diode Current	'5	10 - 20 0	Ch-2			28	А
Pulse Diode Forward Current ^a	I _{SM}		Ch-1			90	~
	OW		Ch-2			110	
Body Diode Voltage	V _{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-1		0.8	1.2	v
	30	I _S = 10 A, V _{GS} = 0 V	Ch-2		0.8	1.2	
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		16	30	ns
Body Blode Heverse Hesovery Time	-11	Channel-1	Ch-2		30	60	110
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 10 \text{ A}, \text{ dl/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	Ch-1		6	12	nC
, and ge	11	······································	Ch-2		21	40	
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		9		
-	-a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$	Ch-2		17		ns
Reverse Recovery Rise Time	t _b		Ch-1		7		
-	-		Ch-2		13		

Notes:


a. Guaranteed by design, not subject to production testing.


b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

VISHAY

This document is subject to chance without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUN Downloaded From Oneyac.com AIMERS, SET FORTH AT www.vishay.com/doc?91000

SiZ900DT Vishay Siliconix

I_D = 19.4 A

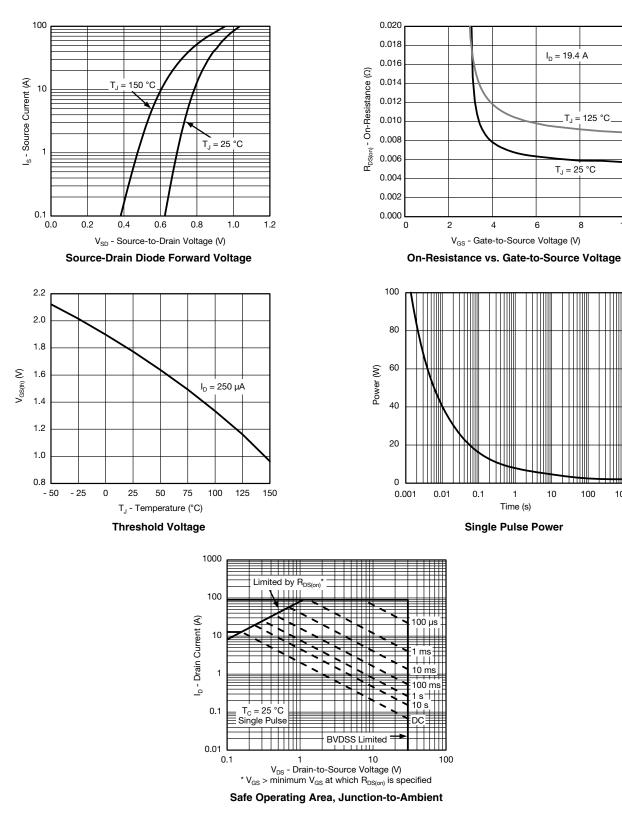
T_J = 125 °C

T_J = 25 °C

8

10

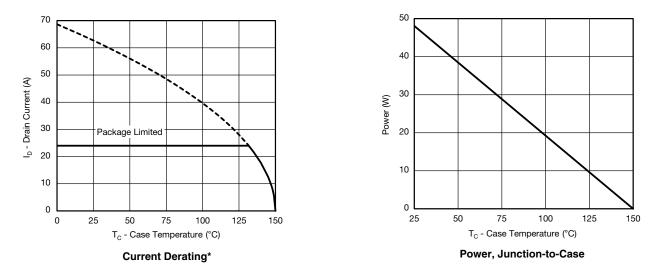
4


6

10

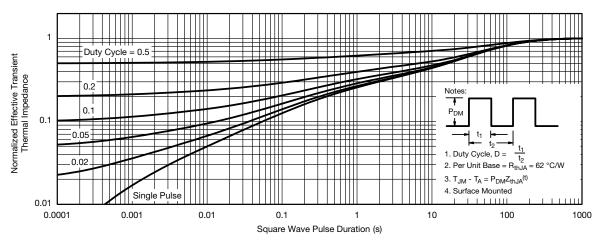
1 Time (s) 100

1000

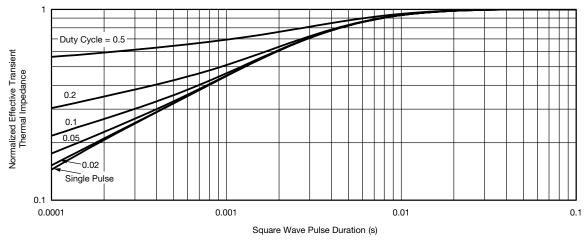

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

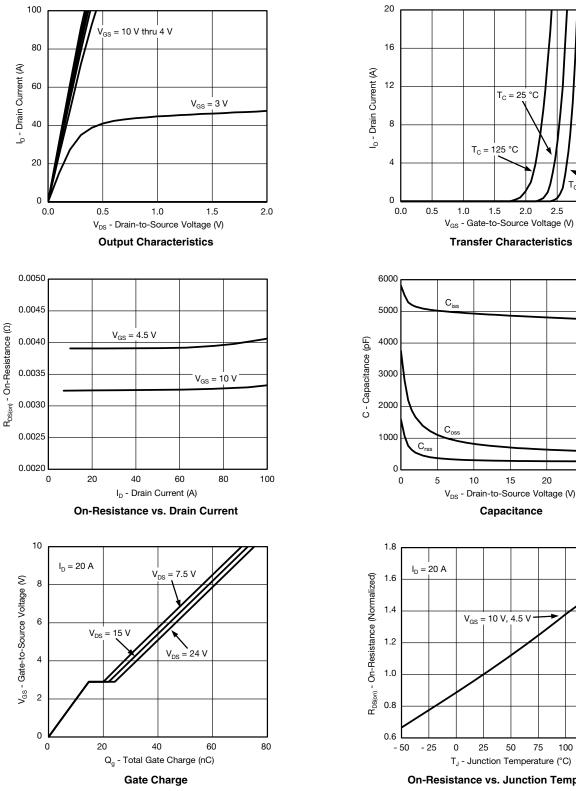

* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

New Product



SiZ900DT Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix

50 75 100 125 150 T_J - Junction Temperature (°C) **On-Resistance vs. Junction Temperature**

www.vishay.com

8

Document Number: 67344 S11-2380-Rev. C, 28-Nov-11

VISHAY

55 °C T_C =

3.5

3.0

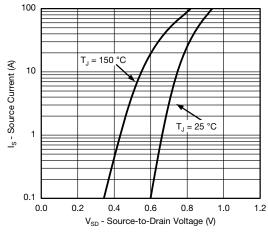
2.0

2.5

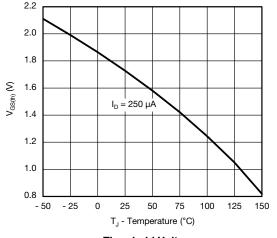
20

25

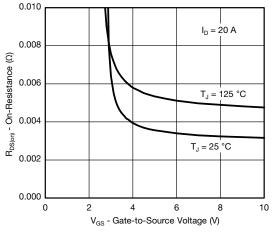
30

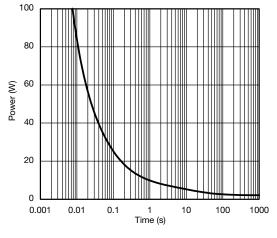

This document is subject to chance without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUN Downloaded From Oneyac.com

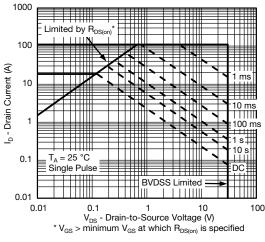
AIMERS, SET FORTH AT www.vishay.com/doc?91000



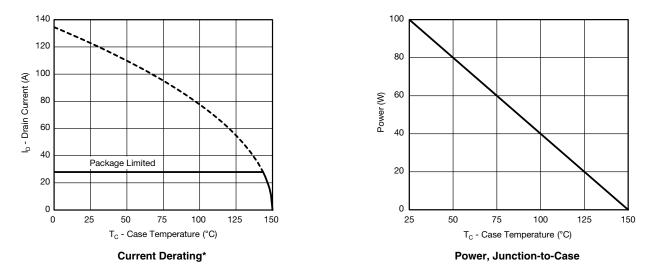
SiZ900DT Vishay Siliconix


CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)





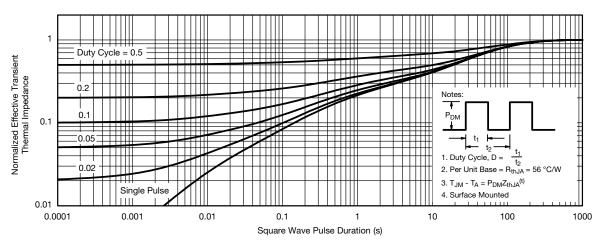
On-Resistance vs. Gate-to-Source Voltage



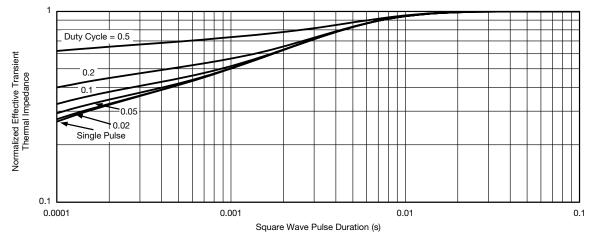
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

New Product



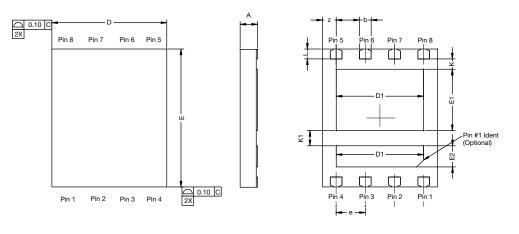
SiZ900DT Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

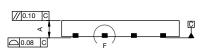
Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67344.


Document Number: 67344 www.vishay.com S11-2380-Rev. C, 28-Nov-11 11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOC Downloaded From Oneyac.com SCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix



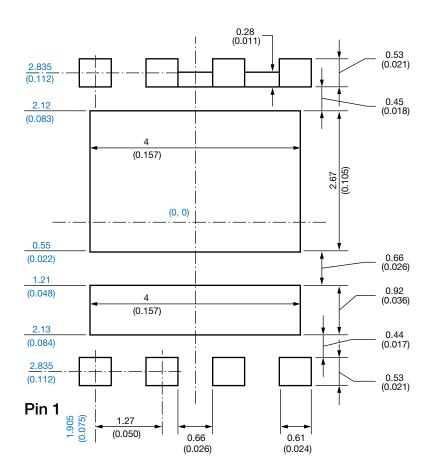
(for SiZ900DT only)

TOP SIDE VIEW

BACK SIDE VIEW

b1

		MILLIMETERS		INCHES	INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.			
А	0.70	0.75	0.80	0.028	0.030	0.032			
A1	0.00	-	0.10	0.000	-	0.004			
A3		0.20 REF			0.008 REF				
b		0.51 BSC			0.020 BSC				
b1		0.25 BSC 0.010 BSC							
D		5.00 BSC		0.197 BSC					
D1	3.75	3.80	3.85	0.148 0.150		0.152			
E		6.00 BSC			0.236 BSC				
E1	2.62	2.67	2.72	0.103	0.105	0.107			
E2	0.87	0.92	0.97	0.034	0.036	0.038			
е		1.27 BSC		0.005 BSC					
К		0.45 TYP.		0.018 TYP.					
K1		0.66 TYP.		0.026 TYP.					
L		0.43 BSC			0.017 BSC				
z	0.34 BSC			0.013 BSC					


Revision: 31-Oct-11

1

Vishay Siliconix

Recommended Minimum PAD for PowerPAIR[®] 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. 单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)