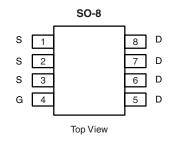


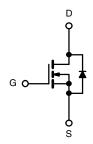
Vishay Siliconix

N-Channel 12-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)			
	0.0027 at V _{GS} = 4.5 V	34				
12	0.0032 at V _{GS} = 2.5 V	31	33 nC			
	0.0040 at $V_{GS} = 1.8 \text{ V}$	28				


FEATURES

- · Halogen-free
- TrenchFET® Power MOSFET
- 100 % R_q Tested
- 100 % UIS Tested



APPLICATIONS

Low V_{IN} DC/DC

 $\textbf{Ordering Information:} \ \text{Si4838BDY-T1-GE3 (Lead (Pb)-free and Halogen-free)}$

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	S T _A = 25 °C, unles	ss otherwise no	oted		
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V_{DS}	12	V		
Gate-Source Voltage	V_{GS}	± 8	¬		
	T _C = 25 °C		34		
Continuous Drain Current (T _{.I} = 150 °C)	T _C = 70 °C		27		
Continuous Diairi Current (1) = 150 C)	T _A = 25 °C	I _D	22.5 ^{b, c}		
	T _A = 70 °C		18.0 ^{b, c}		
Pulsed Drain Current	<u>.</u>	I _{DM}	70	A	
Continuous Course Drain Diade Current	T _C = 25 °C	I-	5.1		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.2 ^{b, c}		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	20		
Avalanche Energy	L = 0.1 mm	E _{AS}	20	mJ	
	T _C = 25 °C		5.7		
Maximum Davies Dissination	T _C = 70 °C	ь	3.6	10/	
Maximum Power Dissipation	T _A = 25 °C	- P _D	2.50 ^{b, c}	w	
	T _A = 70 °C		1.6 ^{b, c}		
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b,d}	t ≤ 10 s	R _{thJA}	39	50	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	18	22	J/ VV	

Notes

- a. Based on $T_C = 25$ °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under Steady State conditions is 85 °C/W.

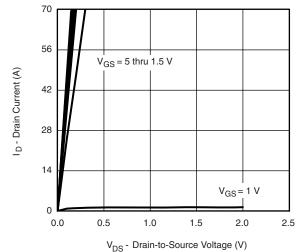
Document Number: 68964 S-82662-Rev. A, 03-Nov-08

Si4838BDY

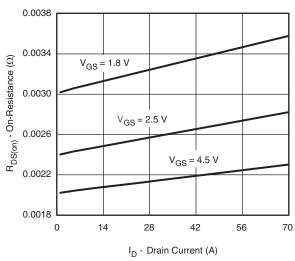
Vishay Siliconix

Parameter Symbol Test Conditions Min. Typ. Max. Unit Static	SPECIFICATIONS $T_J = 25$ °C,	unless othe	erwise noted					
Drain-Source Breakdown Voltage VDB VGB = 0 V, ID = 250 μA 12 VDB	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
V _{DS} Temperature Coefficient ΔV _{OS} (T _J) I _D = 250 μA 12 mV/°C V _{OS(M)} Temperature Coefficient ΔV _{OS(M)} T _J V _{DS} = V _{OS} , I _D = 250 μA 0.4 1.0 V Gate-Source Threshold Voltage I _{OSS} V _{DS} = V _{OS} , I _D = 250 μA 0.4 1.0 V Zero Gate Voltage Drain Current I _{OSS} V _{DS} = 12 V, V _{OS} = 0 V 1 1 μA On-State Drain Current ¹⁴ I _{D(m)} V _{DS} = 12 V, V _{OS} = 0 V, T _D = 55°C 0 10 0 Drain-Source On-State Resistance ¹⁰ P _{OS} = 15 V, V _{OS} = 0 V, T _D = 15 A 0.0021 0.0027 0 Forward Transconductance ¹⁰ 9th V _{DS} = 15 V, I _D = 15 A 0.0021 0.0027 0 Forward Transconductance ¹⁰ 9th V _{DS} = 15 V, I _D = 16 A 105 S S Dynamic ¹ Input Capacitance C _{OSS} V _{DS} = 6 V, V _{GS} = 0 V, f = 1 MHz 1730 0 0 0 pF Reverse Transfer Capacitance C _{OSS} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 56 84 0 <	Static	•				•		
Vos(th) Vos	Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	12			V	
V _{SS(P)} Temperature Coefficient AV _{SS(P)} V _{SS} (P) V _{DS} = V _{SS} (I _D = 250 μA 0.4 1.0 V Gate-Source Threshold Voltage V _{SS} (P) V _{DS} = 0.V, V _{SS} = 8 V ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 12.V, V _{SS} = 0.V 1 μ _D On-State Drain Current ^a I _{D(On)} V _{DS} = 2.5 V, V _{DS} = 4.5 V 30 A Drain-Source On-State Resistance ^a R _{DS(On)} V _{DS} = 4.5 V, I _D = 15 A 0.0021 0.0027 Promard Transconductance ^a 9 fs V _{DS} = 15 V, I _D = 10 A 0.0021 0.0027 Forward Transconductance ^a 9 fs V _{DS} = 15 V, I _D = 10 A 0.0021 0.0021 Forward Transconductance ^a 9 fs V _{DS} = 6 V, V _{GS} = 0 V, I = 1 MHz 5760 S Pypamice ^b V _{DS} = 6 V, V _{GS} = 0 V, I = 1 MHz 1730 P _{DF} Input Capacitance C _{ISS} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 5.9 P _D Reverse Transfer Capacitance C _{ISS} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 5.9 1.145 1.5 Gate-Drain Charge	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L = 250 HA		12		mV/°C	
Seed - Source Leakage	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	1 _D = 250 μΑ		- 3.2			
Variety Var	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.4		1.0	V	
Description	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
On-State Drain Current ^a I _{D(on)} V _{DS} = 12, V, V _{GS} = 4.5 V, V _{GS} = 4.5 V 30 A Drain-Source On-State Resistance ^a R _{DS(on)} V _{DS} = 5.V, V _{GS} = 4.5 V, I _D = 15 A 0.0021 0.0022 Drain-Source On-State Resistance ^a g _{Is} V _{DS} = 18.V, I _D = 10 A 0.0021 0.0025 0.0031 Forward Transconductance ^a g _{Is} V _{DS} = 15.V, I _D = 15 A 105 S Dynamic ^b Input Capacitance C _{Iss} V _{DS} = 6 V, V _{GS} = 0 V, f = 1 MHz 1730 pF Reverse Transfer Capacitance C _{Iss} V _{DS} = 6 V, V _{GS} = 4.5 V, I _D = 10 A 56 84 Reverse Transfer Capacitance C _{Iss} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 56 84 Gate-Source Charge Q _{gs} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 56 84 Gate-Source Charge Q _{gs} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 56 84 Turn-Off Delay Time I _{d(on)} V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A 2.9 55 Fall Time I _t V _{DD} = 6 V, R _L = 0.6 Ω 2.9 55	Zava Cata Valtaga Dvain Curvant	,	V _{DS} = 12 V, V _{GS} = 0 V			1		
Page	zero Gate voltage Drain Current	'DSS	V _{DS} = 12 V, V _{GS} = 0 V, T _J = 55 °C			10	μΑ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	30			Α	
V _{GS} = 1.8 V, I _D = 10 A 0.0031 0.0040			$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$		0.0021	0.0027	Ω	
Forward Transconductance ^a 9fs V _{DS} = 15 V, I _D = 15 A 105 S Dynamic ^b Input Capacitance C _{ISS} V _{DS} = 6 V, V _{GS} = 0 V, f = 1 MHz 1730 pF Output Capacitance C _{OSS} V _{DS} = 6 V, V _{GS} = 0 V, f = 1 MHz 1730 pF Reverse Transfer Capacitance C _{Crss} 11145 1145 1145 Total Gate Charge Q _g 56 84 84 33 50 70 Gate-Source Charge Q _{gs} 59 1 33 50 70	Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 12 \text{ A}$		0.0025	0.0032		
Input Capacitance			V _{GS} = 1.8 V, I _D = 10 A		0.0031	0.0040		
$ \begin{array}{ c c c c c c c c c } \hline Input Capacitance & C_{Iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{oss} \\ \hline Reverse Transfer Capacitance & C_{rss} \\ \hline Total Gate Charge & Q_g \\ \hline Gate-Source Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate Resistance & R_g \\ \hline Rise Time & t_t \\ \hline Turn-On Delay Time & t_{d(on)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Drain-Source Body Diode Characteristics \\ \hline Drain-Source Body Diode Characteristics \\ \hline Pulse Diode Forward Current & I_S \\ \hline Body Diode Reverse Recovery Time & t_{rr} \\ \hline Body Diode Reverse Recovery Time & t_{rr} \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} \\ \hline Reverse Recovery Fall Time & t_a \\ \hline \end{tabular} \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 15 A		105		S	
$ \begin{array}{ c c c c c c c c c } \hline Input Capacitance & C_{Iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{oss} \\ \hline Reverse Transfer Capacitance & C_{rss} \\ \hline Total Gate Charge & Q_g \\ \hline Gate-Source Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Drain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate-Brain Charge & Q_g \\ \hline Gate Resistance & R_g \\ \hline Rise Time & t_t \\ \hline Turn-On Delay Time & t_{d(on)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Turn-Off Delay Time & t_{d(ori)} \\ \hline Fall Time & t_t \\ \hline Drain-Source Body Diode Characteristics \\ \hline Drain-Source Body Diode Characteristics \\ \hline Pulse Diode Forward Current & I_S \\ \hline Body Diode Reverse Recovery Time & t_{rr} \\ \hline Body Diode Reverse Recovery Time & t_{rr} \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} \\ \hline Reverse Recovery Fall Time & t_a \\ \hline \end{tabular} \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b					l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	C _{iss}			5760			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{DS} = 6 V, V _{GS} = 0 V, f = 1 MHz		1730		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance				1145			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·		V _{DS} = 6 V, V _{GS} = 4.5 V, I _D = 10 A			84	nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q_g			33	50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{qs}	V _{DS} = 6 V, V _{GS} = 2.5 V, I _D = 10 A		5.9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	_			12.5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R _q	f = 1 MHz	0.2	0.65	1.3	Ω	
Rise Time t_r $V_{DD} = 6 \text{ V}, R_L = 0.6 \Omega$ 29 55 Turn-Off Delay Time $t_{d(off)}$ 10 ± 10 Å, $V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$ 140 240 Fall Time t_f 35 65 Turn-On Delay Time t_r $V_{DD} = 6 \text{ V}, R_L = 0.6 \Omega$ 12 24 Rise Time t_r $V_{DD} = 6 \text{ V}, R_L = 0.6 \Omega$ 13 26 Turn-Off Delay Time $t_d(off)$ $t_{DE} = 10 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$ 56 100 Fall Time t_f $t_{DE} = 10 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$ 56 100 Drain-Source Body Diode Characteristics $t_{DE} = 10 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$ 56 100 Continuous Source-Drain Diode Current t_g t_g t_g t_g t_g Pulse Diode Forward Current ^a t_g t_g t_g t_g t_g Body Diode Voltage t_g	Turn-On Delay Time				25	50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		$V_{DD} = 6 \text{ V}, R_{L} = 0.6 \Omega$		29	55	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		140	240		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	1			35	65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			12	24	ns	
Fall Time t_f 10 20 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current t_S $t_C = 25 ^{\circ}\text{C}$ 5.1 A Pulse Diode Forward Current t_S $t_S = 3 ^{\circ}\text{A}$ 0.60 1.1 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge t_S $t_S = 10 ^{\circ}\text{A}$ $t_S = 10 ^{\circ}$	Rise Time		$V_{DD} = 6 \text{ V}, R_{L} = 0.6 \Omega$		13	26		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$		56	100		
	Fall Time	1			10	20		
Pulse Diode Forward Current ^a I_{SM} T_{O} T_{O	Drain-Source Body Diode Characteristics							
Pulse Diode Forward Current ^a I_{SM} 70 Body Diode Voltage V_{SD} $I_S = 3$ A 0.60 1.1 V Body Diode Reverse Recovery Time t_{rr} 52 100 ns Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10$ A, $dI/dt = 100$ A/ μ s, $T_J = 25$ °C $I_F = 10$ A, I_F	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			5.1		
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A, dl/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 \text{ °C}$ 21	Pulse Diode Forward Current ^a	I _{SM}				70	A	
Body Diode Reverse Recovery Time t_{rr} 52100nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 10 \text{ A}$, $dI/dt = 100 \text{ A/μs}$, $T_J = 25 ^{\circ}\text{C}$ 4080nCReverse Recovery Fall Time t_a 21ns	Body Diode Voltage	V_{SD}	I _S = 3 A		0.60	1.1	V	
Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A, dl/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ 21	Body Diode Reverse Recovery Time				52	100	ns	
Reverse Recovery Fall Time t _a I _F = 10 A, dl/dt = 100 A/μs, I _J = 25 °C 21	Body Diode Reverse Recovery Charge	ecovery Charge Q			40	80	nC	
ns	Reverse Recovery Fall Time		$I_{\rm F} = 10$ A, al/at = 100 A/ μ s, $I_{\rm J} = 25$ °C		21		ns	
	<u> </u>	t _b			31			

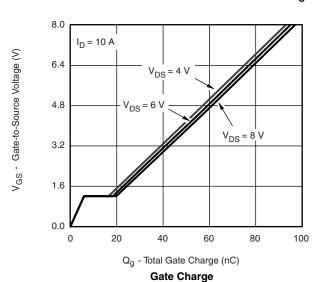
Notes:

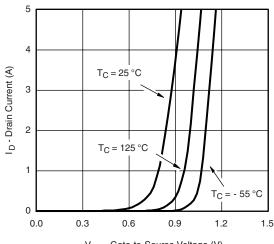

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

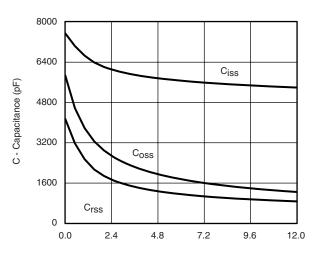


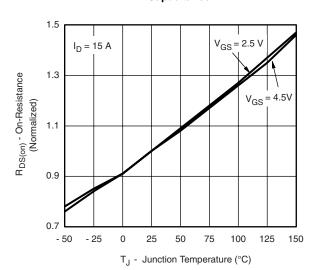
Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Output Characteristics

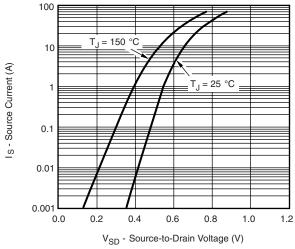

On-Resistance vs. Drain Current and Gate Voltage


V_{GS} - Gate-to-Source Voltage (V)

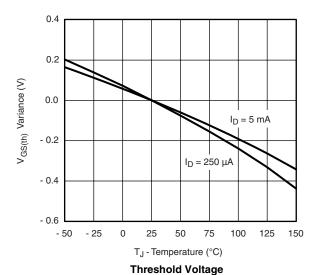
Transfer Characteristics

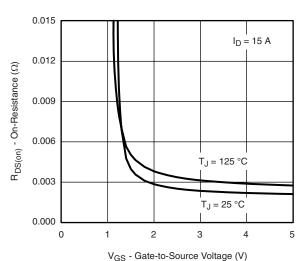
V_{DS} - Drain-to-Source Voltage (V)

Capacitance

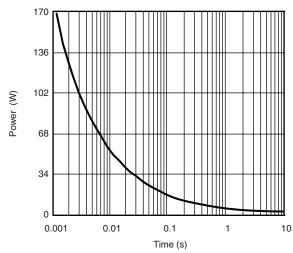


On-Resistance vs. Junction Temperature

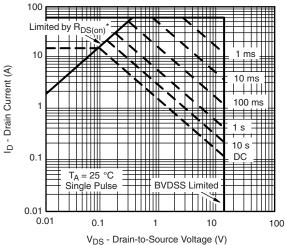

Si4838BDY


Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

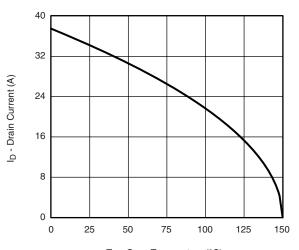


Source-Drain Diode Forward Voltage



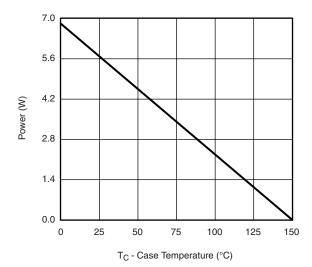
On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

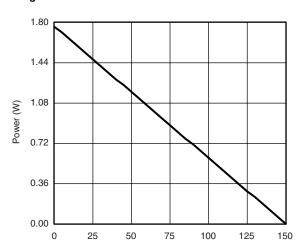


* V_{GS} > minimum V_{GS} at whicht $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient


Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



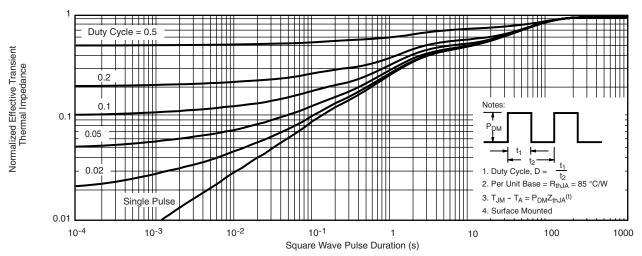
 $T_{\mbox{\scriptsize C}}$ - Case Temperature (°C)

Current Derating*

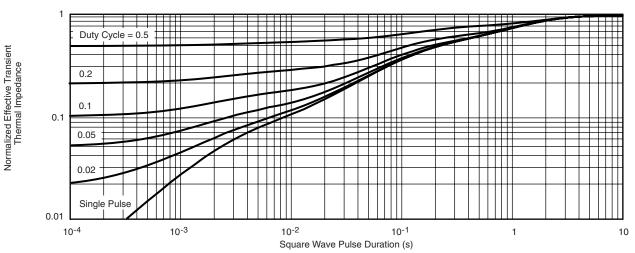
Power, Junction-to-Foot

T_A - Ambient Temperature (°C)

Power, Junction-to-Ambient

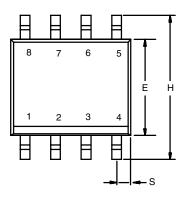

^{*}The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

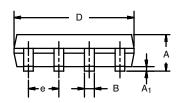
Si4838BDY

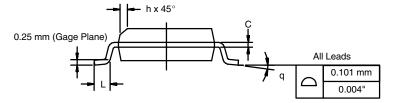

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

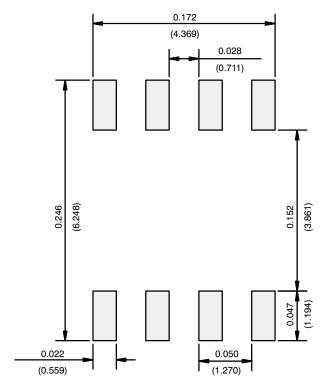



Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?68964.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	INCHES		
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050	BSC		
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
FCN: C-06527-Bey 11-Sen-06						


ECN: C-06527-Rev. I, 11-Sep-06

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06 www.vishay.com

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)

>>点击查看相关商品