HALOGEN

FREE



Vishay Siliconix

# Low Capacitance, +12 V / +5 V / +3 V, Triple SPDT (Triple 2:1) Analog Switch / Multiplexer

#### **DESCRIPTION**

The DG9454E is a high precision triple SPDT (triple 2:1) analog switch / multiplexer with enhanced performance on low power consumption. The part features low parasitic capacitance, low leakage, and low charge injection over the full signal range which make it an ideal switch for healthcare, data acquisition, and instrument products. Its compact size, light weight, low power consumption, and low voltage control capability are of advantages in portable consumer applications such as goggles.

The DG9454E is designed to operate from a 3 V to 16 V supply at V+, and 2.5 V to 5.5 V at  $V_L$ , while guarantees 1.8 V logic compatible over the full operation voltage range.

Processed with advanced CMOS technology, the DG9454E conducts equally well in both directions, offers rail to rail analog signal handling and can be used both as a multiplexer as well as a de-multiplexer.

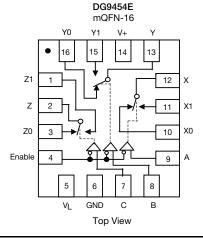
The DG9454E operating temperature is specified from -40 °C to +125 °C. It is available in ultra-compact 1.8 mm x 2.6 mm miniQFN16 package of lead (Pb)-free nickel-palladium-gold device termination. It is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all JEDEC® standards for reflow and MSL ratings.

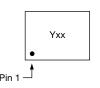
#### **FEATURES**

- Operates with V+ = 3 V to 16 V,
   V<sub>I</sub> = 2.5 V to 5.5 V
- Guaranteed 1.8 V logic control at full V+ range
- Low power consumption, both I+ and  $I_{L} < 1 \mu A$
- Low parasitic capacitance:

 $C_{D(ON)}$ : 8.8 pF  $C_{D(OFF)}$ : 4 pF  $C_{S(OFF)}$ : 3.1 pF

- High bandwidth: 356 MHz
- · Low charge injection over the full signal range
- Compact miniQFN16 package (1.8 mm x 2.6 mm x 0.55 mm)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


#### **APPLICATIONS**


- · Medical and healthcare systems
- Data acquisition systems
- Meters and instruments
- Games and Goggles
- · Automatic test equipment
- Process control and automation
- Communication systems
- Battery powered systems

#### **BENEFITS**

- Low power consumption
- · Precision switching
- Low voltage logic interface
- Bi-directional rail to rail signal switching
- · Compact package option
- · Extended operation temperature range

#### **FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION**





Device Marking: <u>J</u>xx for DG9454E (miniQFN16)

xx = Date/Lot Traceability Code



| TRUTH TABL | TRUTH TABLE |               |   |                           |  |  |  |  |  |  |
|------------|-------------|---------------|---|---------------------------|--|--|--|--|--|--|
| ENABLE     |             | SELECT INPUTS |   | ON SWITCHES               |  |  |  |  |  |  |
| INPUT      | С           | В             | Α | DG9454E                   |  |  |  |  |  |  |
| Н          | X           | X             | X | All Switches Open         |  |  |  |  |  |  |
| L          | L           | L             | L | X to X0, Y to Y0, Z to Z0 |  |  |  |  |  |  |
| L          | L           | L             | Н | X to X1, Y to Y0, Z to Z0 |  |  |  |  |  |  |
| L          | L           | Н             | L | X to X0, Y to Y1, Z to Z0 |  |  |  |  |  |  |
| L          | L           | Н             | Н | X to X1, Y to Y1, Z to Z0 |  |  |  |  |  |  |
| L          | Н           | L             | L | X to X0, Y to Y0, Z to Z1 |  |  |  |  |  |  |
| L          | Н           | L             | Н | X to X1, Y to Y0, Z to Z1 |  |  |  |  |  |  |
| L          | Н           | Н             | L | X to X0, Y to Y1, Z to Z1 |  |  |  |  |  |  |
| L          | Н           | Н             | Н | X to X1, Y to Y1, Z to Z1 |  |  |  |  |  |  |

| ORDERING INFORMATION            |                |                  |                             |  |  |  |  |  |
|---------------------------------|----------------|------------------|-----------------------------|--|--|--|--|--|
| TEMP. RANGE                     | PACKAGE        | PART NUMBER      | MIN. ORDER / PACK. QUANTITY |  |  |  |  |  |
| -40 °C to +85 °C lead (Pb)-free | 16-Pin miniQFN | DG9454EEN-T1-GE4 | Tape and reel, 3000 units   |  |  |  |  |  |

| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25 °C, unless otherwise noted)      |                                                             |             |      |  |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|------|--|--|--|--|--|
| PARAMETER                                                                      | LIMIT                                                       | UNIT        |      |  |  |  |  |  |
| Digital Inputs <sup>a</sup> , V <sub>S</sub> , V <sub>D</sub> , V <sub>L</sub> | GND - 0.3 to (V+) + 0.3<br>or 30 mA, whichever occurs first | V           |      |  |  |  |  |  |
| V+ to GND                                                                      |                                                             | -0.3 to +18 |      |  |  |  |  |  |
| Continuous Current (any terminal)                                              | 30                                                          | A           |      |  |  |  |  |  |
| Peak Current, S or D (pulsed 1 ms, 10 % duty cycle                             | 100                                                         | mA          |      |  |  |  |  |  |
| Storage Temperature                                                            |                                                             | -65 to +150 | °C   |  |  |  |  |  |
| Power Dissipation <sup>b</sup>                                                 | 16-Pin miniQFN <sup>c, d</sup>                              | 525         | mW   |  |  |  |  |  |
| Thermal Resistance b 16-Pin miniQFN d                                          |                                                             | 152         | °C/W |  |  |  |  |  |
| Latch-Up (per JESD78)                                                          | 100                                                         | mA          |      |  |  |  |  |  |
| ESD Human Body Model (HBM); per ANSI / ESDA                                    | / JEDEC JS-001                                              | 2500        | V    |  |  |  |  |  |

#### Notes

- a. Signals on SX, DX, V<sub>L</sub> or INX exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6.6 mW/°C above 70 °C.
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



|                             |                       | TEST CONDITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |        |        | -40 °C to | +125 °C | -40 °C to | o +85 °C |          |
|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|--------|-----------|---------|-----------|----------|----------|
| PARAMETER                   | SYMBOL                | UNLESS OTHERWISE S<br>$V+ = 12 \text{ V}, \text{ V}_L = 2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | TEMP.b | TYP.º  | name d    | naav d  | sans d    | naav d   | UNIT     |
|                             |                       | $V_{IN(A, B, C \text{ and enable})} = 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |        |        | MIN. d    | MAX. d  | MIN. d    | MAX. d   |          |
| Analog Switch               | l                     | I with the state of the state o |                                     |        |        |           |         | l         |          | <u> </u> |
| Analog Signal Range e       | V <sub>ANALOG</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | _      | 0         | 12      | 0         | 12       | V        |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 85     | -         | 103     | -         | 103      |          |
| On-Resistance               | R <sub>ON</sub>       | $I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 6 \text{ V}, 11.3 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | Full   | -      | -         | 133     | -         | 125      |          |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 1.24   | -         | 8       | -         | 8        | _        |
| On-Resistance Match         | $\Delta R_{ON}$       | $I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 11.3 V                            | Full   | -      | -         | 8       | -         | 8        | Ω        |
| On Desistance Flatures      | _                     | 1 1 1 1 0 7 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · \/ 44.0 \/                        | Room   | 27     | 1         | 37      | -         | 37       |          |
| On-Resistance Flatness      | R <sub>FLATNESS</sub> | $I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 6 \text{ V}, 11.3 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | Full   | -      | -         | 44      | -         | 43       |          |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | ± 0.05 | -1        | 1       | -1        | 1        |          |
| Switch Off                  | I <sub>S(off)</sub>   | V+ = 13.2 V, V <sub>L</sub> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7 V                               | Full   | -      | -50       | 50      | -5        | 5        |          |
| Leakage Current             |                       | $V_D = 1 \text{ V} / 12.2 \text{ V}, V_S = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2 V / 1 V                         | Room   | ± 0.07 | -1        | 1       | -1        | 1        | ^        |
|                             | I <sub>D(off)</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | -      | -50       | 50      | -5        | 5        | nA       |
| Channel On                  |                       | V+ = 13.2 V, V <sub>1</sub> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V+ = 13.2 V, V <sub>L</sub> = 2.7 V |        | ± 0.07 | -1        | 1       | -1        | 1        |          |
| Leakage Current             | I <sub>D(on)</sub>    | $V_D = V_S = 1 V / 12.2 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | Full   | -      | -50       | 50      | -5        | 5        |          |
| Digital Control             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |        |        |           |         |           |          |          |
| Logic Low Input Voltage     | V <sub>INL</sub>      | V <sub>L</sub> = 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | Full   | -      | -         | 0.5     | -         | 0.5      | V        |
| Logic High Input Voltage    | V <sub>INH</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | -      | 1.8       | -       | 1.8       | -        | V        |
| Logic Low Input Current     | ΙL                    | V <sub>IN(A0, A1, A2</sub> and enable)<br>under test = 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Full   | 0.02   | -1        | 1       | -1        | 1        |          |
| Logic High Input current    | I <sub>H</sub>        | V <sub>IN(A0, A1, A2</sub> and enable)<br>under test = 1.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Full   | 0.02   | -1        | 1       | -1        | 1        | μA       |
| Dynamic Characteristic      | s                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |        |        |           |         |           |          |          |
| To control Time             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 79     | -         | 119     | _         | 119      |          |
| Transition Time             | t <sub>TRANS</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | -      | -         | 134     | -         | 126      |          |
| Fachla Tour On Time         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 70     | -         | 110     | -         | 110      |          |
| Enable Turn-On Time         | t <sub>ON(EN)</sub>   | $R_L = 300 \Omega, C_L = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85 pF                               | Full   | -      | 1         | 130     | -         | 116      |          |
| English Turn Off Time       |                       | see Fig. 1, 2, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | Room   | 51     | -         | 91      | -         | 91       | ns       |
| Enable Turn-Off Time        | t <sub>OFF(EN)</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | -      | -         | 95      | -         | 94       |          |
| Break-Before-Make           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 17     | -         | -       | -         | -        |          |
| Time Delay                  | t <sub>D</sub>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Full   | -      | 1         | -       | 1         | -        |          |
| Charge Injection e          | Q                     | $C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{GEN} = 0 \text{ V}$             | Full   | 5.84   | -         | =-      | =.        | -        | рС       |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 kHz                             | Room   | -95    | -         | =.      | =.        | -        |          |
| Off Isolation e             | OIRR                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 MHz                               | Room   | -85    | -         | -       | -         | -        |          |
|                             |                       | f = 1 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 MHz                              | Room   | -65    | -         | -       | -         | -        |          |
|                             |                       | $R_L = 50 \Omega$ , $C_L = 5 pF$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 kHz                             | Room   | -92    | -         | -       | -         | -        | dB       |
| Crosstalk e                 | X <sub>TALK</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 MHz                               | Room   | -73    | 1         | -       | -         | -        |          |
|                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 MHz                              | Room   | -53    | 1         | -       | -         | -        |          |
| Bandwidth, -3 dB e          | BW                    | $R_L = 50 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Room   | 356    | -         | -       | -         | -        | MHz      |
| Source Off Capacitance e    | C <sub>S(off)</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 3.1    | -         | -       | -         | -        |          |
| Drain Off Capacitance e     | C <sub>D(off)</sub>   | f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | Room   | 4      | -         | -       | -         | -        | рF       |
| Channel On Capacitance e    | C <sub>D(on)</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Room   | 8.8    | -         | -       | -         | -        | -        |
| Total Harmonic Distortion e | THD                   | Signal = 1 V <sub>RMS</sub><br>20 Hz to 20 kHz, R <sub>L</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | Room   | 0.075  | -         | -       | -         | -        | %        |
|                             | 1                     | · / · · L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | 1      |        |           | 1       | 1         | L        | ı        |



www.vishay.com

# Vishay Siliconix

| SPECIFICATIONS                  | SPECIFICATIONS FOR UNIPOLAR SUPPLIES |                                                                                             |        |       |           |         |           |          |      |  |
|---------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|--------|-------|-----------|---------|-----------|----------|------|--|
|                                 |                                      | TEST CONDITIONS                                                                             |        |       | -40 °C to | +125 °C | -40 °C to | o +85 °C |      |  |
| PARAMETER                       | SYMBOL                               | UNLESS OTHERWISE SPECIFIED $V+=12~V,~V_L=2.7~V$ $V_{IN(A,~B,~C~and~enable)}=1.8~V,~0.5~V$ a | TEMP.b | TYP.° | MIN. d    | MAX. d  | MIN. d    | MAX. d   | UNIT |  |
| Power Supply                    |                                      |                                                                                             |        |       |           |         |           |          |      |  |
| Power Supply Range              | I+                                   | - 0 V or 12 V                                                                               | Room   | 0.05  | 1         | 1       | -         | 1        |      |  |
| Fower Supply hange              |                                      |                                                                                             | Full   | -     | -         | 10      | -         | 10       |      |  |
| Ground Current                  |                                      | $V_{IN(A, B, C \text{ and enable})} = 0 \text{ V or } 12 \text{ V}$                         | Room   | 0.05  | -1        | -       | -1        | -        |      |  |
| Ground Current I <sub>GND</sub> |                                      |                                                                                             | Full   | -     | -10       | -       | -10       | -        | μA   |  |
| Logic Supply Current            | 1.                                   | V - 2.7 V                                                                                   | Room   | 0.05  | -         | 1       | -         | 1        |      |  |
| Logic Supply Current            | IL                                   | $V_L = 2.7 \text{ V}$                                                                       | Full   | -     | -         | 10      | -         | 10       |      |  |

#### Notes

- a.  $V_{IN}$  = input voltage to perform proper function.
- b. Room = 25  $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.



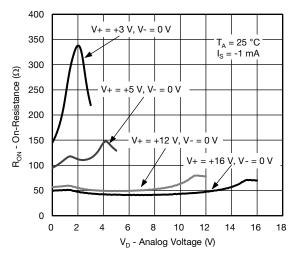
| <b>SPECIFICATIONS F</b>                  | OR UNIF               | POLAR SUPPLIES                                                         |        |          |           |         |                  |         |      |
|------------------------------------------|-----------------------|------------------------------------------------------------------------|--------|----------|-----------|---------|------------------|---------|------|
|                                          |                       | TEST CONDITIONS                                                        |        |          | -40 °C to | +125 °C | -40 °C to +85 °C |         |      |
| PARAMETER                                | SYMBOL                | UNLESS OTHERWISE SPECIFIED $V+ = 5 \text{ V}, V_L = 2.7 \text{ V}$     | TEMP.b | TYP. c   | MIN. d    | MAX. d  | MIN. d           | MAX. d  | UNIT |
|                                          |                       | V <sub>IN(A, B, C and enable)</sub> = 1.8 V, 0.5 V <sup>a</sup>        |        |          |           |         |                  | 100 0 0 |      |
| Analog Switch                            |                       |                                                                        |        |          |           |         |                  |         |      |
| Analog Signal Range e                    | V <sub>ANALOG</sub>   |                                                                        | Full   | -        | 0         | 5       | 0                | 5       | ٧    |
| On-Resistance                            | В                     | $I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3.5 \text{ V}$                 | Room   | 125      | -         | 147     | -                | 147     |      |
| On-nesistance                            | R <sub>ON</sub>       | $I_S = I IIIA, V_D = 0 V, 3.3 V$                                       | Full   | -        | -         | 176     | -                | 168     |      |
| On Decistance Metab                      | A.D.                  | 1 1 m A V 2 5 V                                                        | Room   | 1.33     | -         | 8       | -                | 8       |      |
| On-Resistance Match                      | $\Delta R_{ON}$       | $I_S = 1 \text{ mA}, V_D = 3.5 \text{ V}$                              | Full   | -        | -         | 8       | -                | 8       | Ω    |
| On Desistance Flateres                   | 0                     | 1 1 22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                 | Room   | 21       | -         | 31      | -                | 31      |      |
| On-Resistance Flatness                   | R <sub>FLATNESS</sub> | $I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3 \text{ V}$                   | Full   | -        | -         | 25      | -                | 29      |      |
|                                          |                       |                                                                        | Room   | ± 0.03   | -1        | 1       | -1               | 1       |      |
| Switch Off                               | I <sub>S(off)</sub>   | V+ = 5.5 V, V- = 0 V                                                   | Full   | -        | -50       | 50      | -5               | 5       |      |
| Leakage Current                          |                       | $V_D = 1 \text{ V} / 4.5 \text{ V}, V_S = 4.5 \text{ V} / 1 \text{ V}$ | Room   | ± 0.03   | -1        | 1       | -1               | 1       |      |
|                                          | I <sub>D(off)</sub>   |                                                                        | Full   | -        | -50       | 50      | -5               | 5       | nA   |
| Channel On                               |                       | V+ = 5.5 V, V- = 0 V                                                   | Room   | ± 0.03   | -1        | 1       | -1               | 1       |      |
| Leakage Current                          | $I_{D(on)}$           | $V_D = V_S = 1 \text{ V } / 4.5 \text{ V}$                             |        | -        | -50       | 50      | -5               | 5       |      |
| Digital Control                          |                       |                                                                        |        | <u> </u> |           |         | <u>l</u>         |         |      |
| V <sub>IN(A, B, C and enable)</sub> Low  | V <sub>IL</sub>       | V <sub>L</sub> = 2.7 V                                                 | Full   | _        | -         | 0.6     | _                | 0.6     |      |
| V <sub>IN(A, B, C and enable)</sub> High | V <sub>IH</sub>       | V <sub>L</sub> = 2.7 V                                                 | Full   | -        | 1.8       | -       | 1.8              | -       | V    |
| Input Current, V <sub>IN</sub> Low       | IL                    | V <sub>IN(A, B, C and enable)</sub> under test = 0.6 V                 | Full   | 0.02     | -1        | 1       | -1               | 1       |      |
| Input Current, V <sub>IN</sub> High      | I <sub>H</sub>        | $V_{IN(A, B, C \text{ and enable})}$ under test = 1.8 V                | Full   | 0.02     | -1        | 1       | -1               | 1       | μΑ   |
| Dynamic Characteristics                  |                       | my t, b, o and onable)                                                 |        |          |           |         | <u>l</u>         |         |      |
| <del>-</del>                             |                       |                                                                        | Room   | 95       | _         | 135     | _                | 135     | ns   |
| Transition Time                          | t <sub>TRANS</sub>    |                                                                        | Full   | -        | -         | 164     | -                | 152     |      |
|                                          |                       |                                                                        | Room   | 80       | -         | 120     | -                | 120     |      |
| Enable Turn-On Time                      | t <sub>ON</sub>       | $R_L = 300 \Omega, C_L = 35 pF$                                        | Full   | -        | -         | 138     | -                | 129     |      |
|                                          |                       | see Fig. 1, 2, 3                                                       | Room   | 58       | _         | 98      | -                | 98      |      |
| Enable Turn-Off Time                     | t <sub>OFF</sub>      | _                                                                      | Full   | -        | _         | 106     | -                | 103     |      |
| Break-Before-Make                        |                       |                                                                        | Room   | 45       | _         | -       | _                | -       |      |
| Time Delay                               | $t_D$                 |                                                                        | Full   | -        | 24        | _       | 15               | _       |      |
| Charge Injection e                       | Q                     | $V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$                | Full   | 1.44     |           | _       | -                | _       | рС   |
| Off Isolation e                          | OIRR                  |                                                                        | Room   | -95      | -         | _       | _                | _       | PO   |
| Channel-to-Channel                       |                       | $R_L = 50 \Omega, C_L = 5 pF$<br>f = 100 kHz                           |        |          |           |         |                  |         | dB   |
| Crosstalk <sup>e</sup>                   | X <sub>TALK</sub>     | 1 = 100 KHZ                                                            | Room   | -92      | -         | -       | -                | -       |      |
| Source Off Capacitance e                 | C <sub>S(off)</sub>   |                                                                        | Room   | 3.5      | -         | -       | -                | -       |      |
| Drain Off Capacitance e                  | C <sub>D(off)</sub>   | f = 1 MHz                                                              | Room   | 4.5      | -         | -       | -                | -       | pF   |
| Channel On Capacitance e                 | C <sub>D(on)</sub>    |                                                                        | Room   | 10.2     | -         | -       | -                | -       |      |
| Power Supply                             |                       |                                                                        |        | 1        |           |         | T                | ı       |      |
| Power Supply Current                     | I+                    |                                                                        | Room   | 0.05     | -         | 1       | -                | 1       |      |
| Towor Supply Surroit                     | ••                    | V <sub>IN(A, B, C and enable)</sub> = 0 V or 5 V                       | Full   | -        | -         | 10      | -                | 10      |      |
| Ground Current                           | $I_{GND}$             | IN(A, B, C and enable) - 0 v or 0 v                                    | Room   | -0.05    | -1        | -       | -1               | -       | μA   |
| Ground Guiront                           | 'GND                  |                                                                        | Full   | -        | -10       | -       | -10              | -       | μΛ   |
| Logic Supply Current                     | ΙL                    | V <sub>L</sub> = 2.7 V                                                 | Room   | 0.05     | -         | 1       | -                | 1       |      |
| Logic oupply ourient                     | 'L                    | V 2.1 V                                                                | Full   | -        | -         | 10      | -                | 10      |      |

#### **Notes**

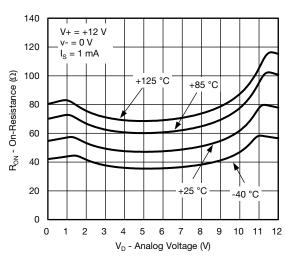
a.  $V_{IN}$  = input voltage to perform proper function.

S16-0652-Rev. A, 18-Apr-16

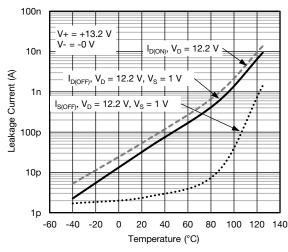
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.


| SPECIFICATIONS F         | OK UNII              | 1                                                            |                        |        | 1      |           |         |          |          |      |
|--------------------------|----------------------|--------------------------------------------------------------|------------------------|--------|--------|-----------|---------|----------|----------|------|
|                          |                      | TEST CONDITION UNLESS OTHERWISE S                            |                        |        |        | -40 °C to | +125 °C | -40 °C t | o +85 °C |      |
| PARAMETER                | SYMBOL               | $V_{+} = 3 \text{ V}, V_{L} = 2.7$                           |                        | TEMP.b | TYP. c | MIN. d    | MAX. d  | MINI d   | MAX. d   | UNIT |
|                          |                      | V <sub>IN(A, B, C AND ENABLE)</sub> = 1.                     |                        |        |        | IVIIIV.   | WAA.    | IVIIIA.  | WAX.     |      |
| Analog Switch            |                      |                                                              |                        |        |        |           |         |          |          |      |
| Analog Signal Range e    | V <sub>ANALOG</sub>  |                                                              |                        | Full   | -      | 0         | 3       | 0        | 3        | V    |
| On Besistance            |                      | 1 4 4 4 4 1                                                  |                        | Room   | 221    | -         | -       | -        | -        | 0    |
| On-Resistance            | R <sub>ON</sub>      | $I_S = 1 \text{ mA}, V_D = 1.$                               | o v                    | Full   | -      | -         | -       | -        | -        | Ω    |
|                          |                      |                                                              |                        | Room   | ± 0.02 | -1        | 1       | -1       | 1        |      |
| Switch Off               | I <sub>S(off)</sub>  | $V+ = 3.3 V, V_L = 2$                                        | .7 V                   | Full   | -      | -50       | 50      | -5       | 5        |      |
| Leakage Current          | _                    | $V_D = 0.3 \text{ V} / 3 \text{ V}, V_S = 3$                 | V / 0.3 V              | Room   | ± 0.02 | -1        | 1       | -1       | 1        | A    |
|                          | I <sub>D(off)</sub>  |                                                              |                        | Full   | -      | -50       | 50      | -5       | 5        | nA   |
| Channel On               |                      | $V+ = 3.3 \text{ V}, V_L = 2$                                | .7 V                   | Room   | ± 0.02 | -1        | 1       | -1       | 1        |      |
| Leakage Current          | I <sub>D(on)</sub>   | $V_S = V_D = 0.3 \text{ V} /$                                |                        | Full   | -      | -50       | 50      | -5       | 5        |      |
| Digital Control          |                      |                                                              |                        |        | •      |           |         | •        |          |      |
| Logic Low Input Voltage  | V <sub>INL</sub>     | V <sub>L</sub> = 2.7 V                                       |                        | Full   | _      | -         | 0.6     | -        | 0.6      | .,   |
| Logic High Input Voltage | V <sub>INH</sub>     |                                                              |                        | Full   | -      | 1.8       | -       | 1.8      | -        | V    |
| Logic Low Input Current  | ΙL                   | V <sub>IN(A0, A1, A2</sub> and enable)<br>under test = 0.6 V |                        | Full   | 0.02   | -1        | 1       | -1       | 1        |      |
| Logic High Input Current | I <sub>H</sub>       | V <sub>IN(A0, A1, A2</sub> and enable)<br>under test = 1.8 V |                        | Full   | 0.02   | -1        | 1       | -1       | 1        | μA   |
| Dynamic Characteristics  |                      |                                                              |                        |        |        |           |         |          |          |      |
| To solve a Trace         |                      | IS                                                           |                        | Room   | 161    | -         | -       | -        | -        |      |
| Transition Time          | t <sub>TRANS</sub>   |                                                              |                        | Full   | -      | -         | -       | -        | -        | ns   |
| Fachla Time On Time      |                      |                                                              |                        |        | 120    | -         | -       | -        | -        |      |
| Enable Turn-On Time      | t <sub>ON(EN)</sub>  | $R_L = 300 \Omega, C_L = 35 pF$                              |                        | Full   | -      | -         | -       | -        | -        |      |
| Fachla Time Off Time     |                      | see Fig. 1, 2, 3                                             |                        | Room   | 79     | -         | -       | -        | -        |      |
| Enable Turn-Off Time     | t <sub>OFF(EN)</sub> |                                                              | Full                   | -      | -      | -         | -       | -        |          |      |
| Break-Before-Make        |                      | 1                                                            |                        | Room   | 98     | -         | -       | -        | -        | 1    |
| Time Delay               | t <sub>D</sub>       |                                                              |                        | Full   | -      | -         | -       | -        | -        |      |
| Charge Injection e       | Q                    | $C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V$                  | / <sub>GEN</sub> = 0 V | Full   | 0.58   | -         | -       | -        | -        | рС   |
| Off Isolation e          | OIRR                 | $f = 1 \text{ MHz}, R_L = 50 \Omega,$                        | 100 kHz                | Room   | -95    | -         | -       | -        | -        |      |
| Crosstalk e              | X <sub>TALK</sub>    | $C_L = 5 pF$                                                 | 100 kHz                | Room   | -92    | -         | -       | -        | -        | dB   |
| Source Off Capacitance e | C <sub>S(off)</sub>  |                                                              | I                      | Room   | 3.7    | -         | -       | -        | -        |      |
| Drain Off Capacitance e  | C <sub>D(off)</sub>  | f = 1 MHz                                                    |                        | Room   | 4.7    | -         | -       | -        | -        | рF   |
| Channel On Capacitance e | C <sub>D(on)</sub>   |                                                              | Room                   | 10.4   | -      | -         | -       | -        |          |      |
| Power Supply             | 5(01.)               |                                                              |                        |        | ı      |           | l       | l        |          |      |
|                          | _                    |                                                              |                        | Room   | 0.05   | -         | 1       | _        | 1        |      |
| Power Supply Range       | l+                   |                                                              |                        | Full   | -      | -         | 10      | _        | 10       |      |
|                          |                      | $V_{IN (A, B, C \text{ and enable})} = 0$                    | V or 3 V               | Room   | 0.05   | -1        | -       | -1       | -        |      |
| Ground Current           | $I_{GND}$            |                                                              |                        | Full   | -      | -10       | -       | -10      | -        | μA   |
|                          |                      |                                                              |                        | ·      |        |           |         |          |          |      |
| Logic Supply Current     | ΙL                   | $V_{L} = 2.7 \text{ V}$                                      |                        | Room   | 0.05   | -         | 1       | -        | 1        |      |

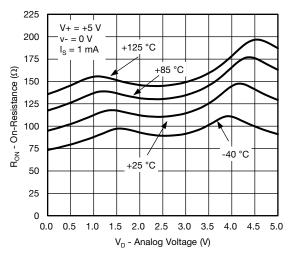
#### Notes


- a.  $V_{IN}$  = input voltage to perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.

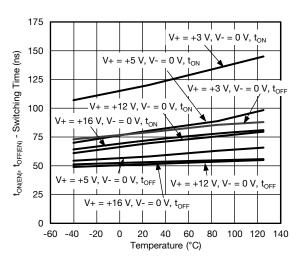



#### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

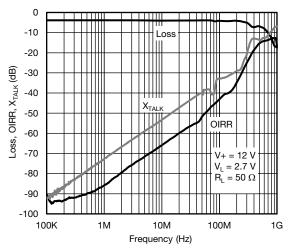



On-Resistance vs. VD and Signal Supply Voltage




On-Resistance vs. Analog Voltage and Temperature

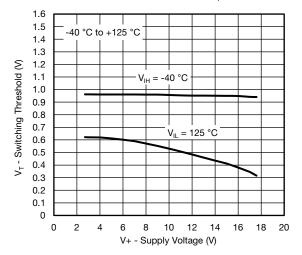


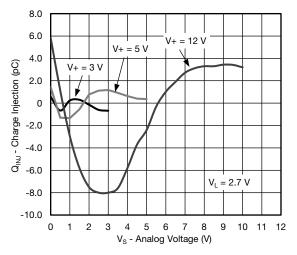

Leakage Current vs. Temperature



On-Resistance vs. Analog Voltage and Temperature

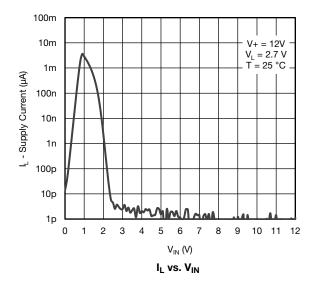



Switching Time vs. Temperature

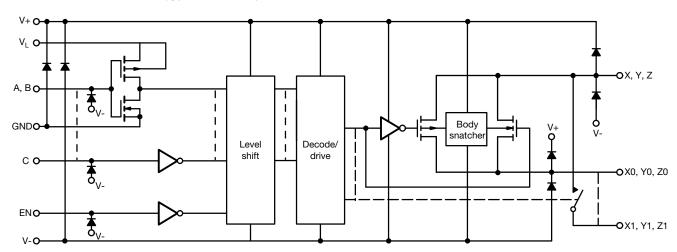



Insertion Loss, Off-Isolation, Crosstalk vs. Frequency



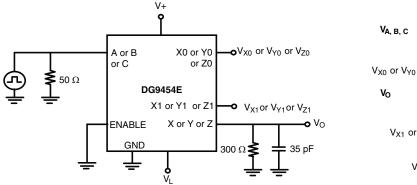

#### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)






Switching Threshold vs. Logic Supply Voltage

Charge Injection vs. Analog Voltage




#### **SCHEMATIC DIAGRAM** (typical channel)





#### **TEST CIRCUITS**



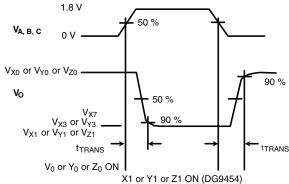
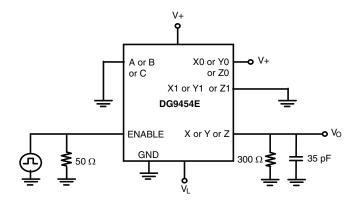




Fig. 1 - Transition Time



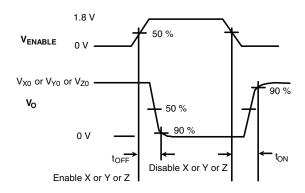
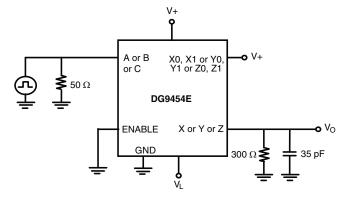




Fig. 2 - Enable Switching Time



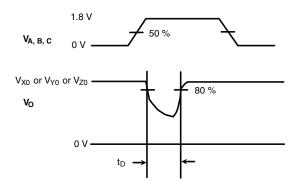



Fig. 3 - Break-Before-Make



#### **TEST CIRCUITS**

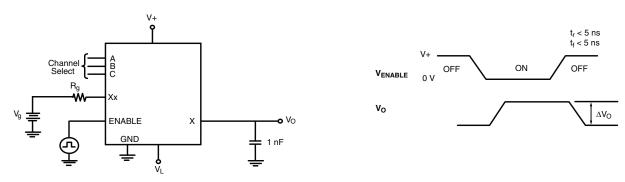
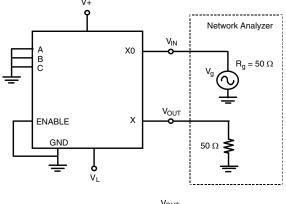
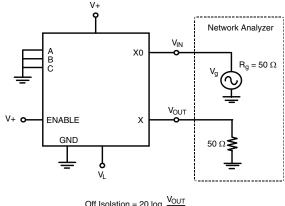





Fig. 4 - Charge Injection



Insertion Loss = 20 log  $\frac{V_{OUT}}{V_{IN}}$ 

Fig. 5 - Insertion Loss



Off Isolation = 20 log  $\frac{V_{OUT}}{V_{IN}}$ 

Fig. 7 - Off Isolation

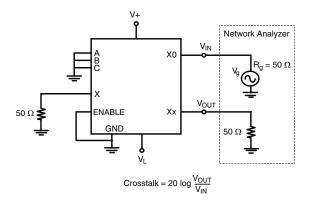



Fig. 6 - Crosstalk

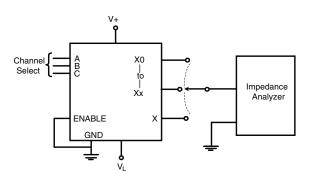
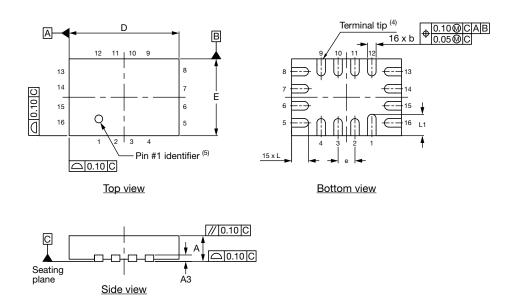




Fig. 8 - Source, Drain Capacitance

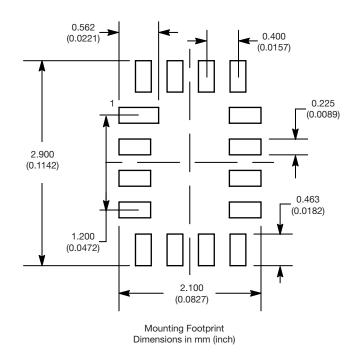
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67172.

### Thin miniQFN16 Case Outline



| DIMENSIONS        |           | MILLIMETERS (1) |      |           | INCHES     |       |  |
|-------------------|-----------|-----------------|------|-----------|------------|-------|--|
| DIMENSIONS        | MIN.      | NOM.            | MAX. | MIN.      | NOM.       | MAX.  |  |
| А                 | 0.50      | 0.55            | 0.60 | 0.020     | 0.022      | 0.024 |  |
| A1                | 0         | -               | 0.05 | 0         | -          | 0.002 |  |
| A3                | 0.15 ref. |                 |      |           | 0.006 ref. |       |  |
| b                 | 0.15      | 0.20            | 0.25 | 0.006     | 0.008      | 0.010 |  |
| D                 | 2.50      | 2.60            | 2.70 | 0.098     | 0.102      | 0.106 |  |
| е                 |           | 0.40 BSC        |      | 0.016 BSC |            |       |  |
| E                 | 1.70      | 1.80            | 1.90 | 0.067     | 0.071      | 0.075 |  |
| L                 | 0.35      | 0.40            | 0.45 | 0.014     | 0.016      | 0.018 |  |
| L1                | 0.45      | 0.50            | 0.55 | 0.018     | 0.020      | 0.022 |  |
| N (3)             |           | 16              |      |           | 16         |       |  |
| Nd <sup>(3)</sup> |           | 4 4             |      |           |            |       |  |
| Ne <sup>(3)</sup> |           | 4               |      |           | 4          |       |  |

#### Notes


- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023



#### **RECOMMENDED MINIMUM PADS FOR MINI QFN 16L**





Vishay

#### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

# 单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)