

HALOGEN

FREE

Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers

DESCRIPTION

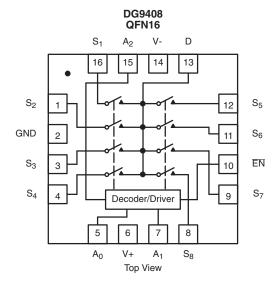
The DG9408, DG9409 uses BiCMOS wafer fabrication technology that allows the DG9408, DG9409 to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with \pm 3 V to \pm 6 V.

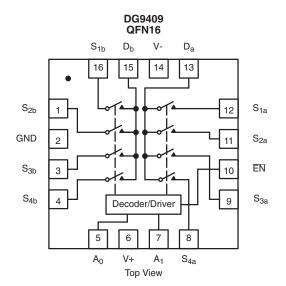
The DG9408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A₀, A₁, A₂). The DG9409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A₀, A₁). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. The DG9408, DG9409 are offered in a QFN package that has a nickel-palladiumgold device terminations and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all the JEDEC standards for reflow and MSL ratings.

FEATURES

- 2.7 V to 12 V single supply or \pm 3 V to \pm 6 V dual supply operation
- Low on-resistance R_{ON} : 3.9 Ω typ.
- Fast switching: t_{ON} 42 ns, t_{OFF} 24 ns
- Break-before-make guaranteed
- Low leakage
- TTL, CMOS, LV logic (3 V) compatible
- 2000 V ESD protection (HBM)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912


BENEFITS


- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Data acquisition systems
- Battery operated equipment
- Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL. DSLAM
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLES AND ORDERING INFORMATION

TRUTI	TRUTH TABLE DG9408										
A ₂	A ₁	A ₀	EN	On Switch							
Х	Х	Х	1	None							
0	0	0	0	1							
0	0	1	0	2							
0	1	0	0	3							
0	1	1	0	4							
1	0	0	0	5							
1	0	1	0	6							
1	1	0	0	7							
1	1	1	0	8							

TRUTH	TRUTH TABLE DG9409										
A ₁	A ₀	A ₀ EN On Switch									
Х	Х	1	None								
0	0	0	1								
0	1	0	2								
1	0	0	3								
1	1	0	4								

X = Don't care

For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" Parameters for Specific V+ operation. See Specifications Tables for:

Single Supply 12 V

Dual Supply V+ = 5 V, V- = -5 V

Single Supply 5 V

Single Supply 3 V

ORDERING INFORMATION								
Temp. Range	Package	Part Number						
- 40 °C to 85 °C	16-pin QFN (4 mm x 4 mm)	DG9408DN-T1-E4						
	(Variation 1)	DG9409DN-T1-E4						

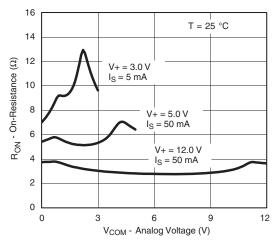
Parameter	Limit	Unit		
Voltage Referenced V+ to V-	14	-		
GND	7			
Digital Inputs ^a , V _S , V _D	(V-) - 0.3 to (V+) + 0.3			
Current (Any Terminal Except S or D)	30			
Continuous Current, S or D		100	mA	
Peak Current, S or D (Pulsed at 1 ms, 10 % Dut	y Cycle max.)	200		
Package Solder Reflow Conditions ^d	16-pin (4 x 4 mm) QFN	240	°C	
Storage Temperature	•	- 65 to 150	1	
Power Dissipation (Package) ^b , (T _A = 70 °C)	16-pin (4 x 4 mm) QFN ^c	1880	mW	

- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 23.5 mW/°C above 70 °C.
- d. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

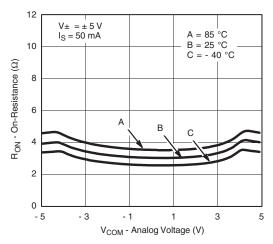
SPECIFICATIONS (Sin		Test Conditions Unless Otherwise Specifi		- 40					
Parameter	Symbol	$V_{+} = 12 \text{ V}, \pm 10 \text{ %}, V_{-} = 0$ $V_{A}, V_{\overline{EN}} = 0.8 \text{ V or } 2.4 \text{ V}^{\dagger}$	Temp.b	Min.c	Typ. ^d	Max.c	Unit		
Analog Switch	Symbol	TA, TEN SIGHT SI ELLI		remp.	IVIIII.	Typ.	IVIAA.	Oilit	
Analog Signal Range ^e	V _{ANALOG}			Full	0		12	V	
		V+ = 10.8 V, V _D = 2 V or 9 V, I _S =	= 50 mA	Room		4	7		
On-Resistance	R _{ON}	sequence each switch on		Full			7.5		
R _{ON} Match Between Channels ^g	ΔR_{ON}			Room			3.6	Ω	
On-Resistance Flatness ⁱ	R _{ON} Flatness	$V+ = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}, I_S =$	= 50 mA	Room			8		
Switch Off Leakage Current	I _{S(off)}	$V_{\overline{EN}} = 2.4 \text{ V}, V_D = 11 \text{ V or 1 V}, V_S =$	1 V or 11 V	Room Full	- 2 - 15		2 15		
Switch on Ecatago Garrent	I _{D(off)}	$V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ V_{INH} V_{INL} V_{INL} $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = \text{V}_{\text{D}} = 1 \text{ V or } 11 \text{ V}$ $V_{\text{EN}} = 0 \text{ V}, \text{ V}_{\text{S}} = 0 \text{ V}, \text{ V}_{\text{S}} = 0 \text{ V}, \text{ V}_{\text{S}} = 0 \text{ V}$	- 2 - 15		2 15	nA			
Channel On Leakage Current	$I_{D(on)}$	$V_{\overline{EN}} = 0 \text{ V}, V_S = V_D = 1 \text{ V or } T$				2 15			
Digital Control									
Logic High Input Voltage	V_{INH}				2.4			V	
Logic Low Input Voltage	V_{INL}		Full			0.8	V		
Input Current	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2.4 \text{ V or } 0.8 \text{ V}$	Full	- 1		1	μΑ		
Dynamic Characteristics									
Transition Time	t _{TRANS}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, (DG94)$ $V_{S1b} = 8 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$ see fig. 2		Room Full		42	71 75		
Break-Before-Make Time	t _{BBM}	$V_{S(all)} = V_{DA} = 5 V$ see fig. 4		Room Full	2	24		ns	
Enable Turn-On Time	t _{ON(EN)}	V _{AX} = 0 V, V _{S1} = 5 V (DG94 V _{AX} = 0 V, V _{S1b} = 5 V (DG94		Room Full		42	70 75		
Enable Turn-Off Time	t _{OFF(EN)}	see fig. 3		Room Full		24	44 46		
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \text{ V}$	= 0 Ω	Room		29		рС	
Off Isolation ^{e, h}	OIRR	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$		Room		- 80		dB	
Crosstalk ^e	X _{TALK}	30 1012, 112 - 1142		Room		- 85		GD.	
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 2.4 \text{ V}$	DG9408	Room		21			
			DG9409 DG9408	Room Room		23			
Drain Off Capacitance ^e	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2.4 \text{ V}$	DG9409	Room		112		pF	
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room Room		238 137		1	
Power Supplies				1		1		l	
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ	

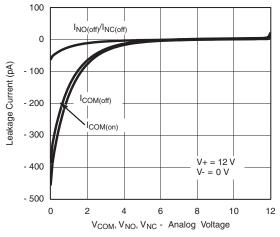
		Test Conditions Unless Otherwise Specific V+ = 5 V, V- = - 5 V, ± 10 %		Limits - 40 °C to 85 °C				
Parameter	Symbol	$V_A, V_{\overline{EN}} = 0.8 \text{ V or 2 V}^f$			Min.c	Typ.d	Max.c	Unit
Analog Switch				Temp.b	L			
Analog Signal Range ^e	V _{ANALOG}			Full	- 5		5	V
On-Resistance	R _{ON}	V+ = 4.5 V, V- = - 4.5 V, V_D = \pm 3.5 V, sequence each switch on	Room Full		5	8 8.5		
R _{ON} Match Between Channels ^g	ΔR_{ON}			Room			3.6	Ω
On-Resistance Flatness ⁱ	R _{ON} Flatness	$V+ = 4.5 \text{ V}, V- = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$	Room			8.2		
Switch Off Leakage Current ^a	I _{S(off)}	V+ = 5.5 , V- = - 5.5 V		Room Full	- 2 - 15		2 15	
Switch Off Leakage Current	I _{D(off)}				- 2 - 15		2 15	nA
Channel On Leakage Current ^a	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V $V_{\overline{EN}} = 0 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm$	4.5 V	Room Full	- 2 - 15		2 15	
Digital Control								
Logic High Input Voltage	V_{INH}				2			V
Logic Low Input Voltage	V_{INL}			Full			0.8	٧
Input Current ^a	I_{IN}	$V_{AX} = V_{EN} = 2 \text{ V or } 0.8 \text{ V}$		Full	- 1		1	μΑ
Dynamic Characteristics								
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DGS)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (DGS)$ see fig. 2		Room Full		68	89 94	
Break-Before-Make Time ^e	t _{BBM}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$ see fig. 4		Room Full	1	16		ns
Enable Turn-On Time ^e	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 3.5 V (DG94 V _{AX} = 0 V, V _{S1b} = 3.5 V (DG94		Room Full		68	88 94	
Enable Turn-Off Time ^e	$t_{OFF(\overline{EN})}$	see fig. 3		Room Full		58	78 81	
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408 DG9409	Room Room		23 23		
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408 DG9409	Room Room		223 113		рF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG0408			246 137		
Power Supplies								
	I+	V— - V - 0 V oz V		Room			1	
Power Supply Current	I-	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room	- 1			μΑ

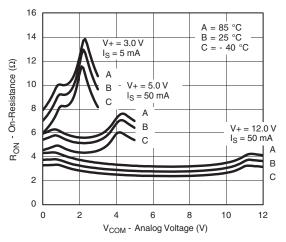
SPECIFICATIONS (Single Supply 5 V) Test Conditions Limits										
		Test Conditions Unless Otherwise Specific V+ = 5 V, ± 10 %, V- = 0 V		- 40	s°C					
Parameter	Symbol	V_A , $V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^f$		Temp.b	Min.c	Typ.d	Max. ^c	Unit		
Analog Switch	 	A. LIV		10		176.		U		
Analog Signal Range ^e	V _{ANALOG}			Full	0		5	٧		
On-Resistance	R _{ON}	$V+ = 4.5 \text{ V}, V_D \text{ or } V_S = 1 \text{ V or } 3.5 \text{ V},$	I _S = 50 mA	Room Full		7	10.5 11			
R _{ON} Match Between Channels ^g	ΔR _{ON}	V+ = 4.5 V, V _D = 1 V or 3.5 V, I _S =	- 50 mA	Room			3.6	Ω		
On-Resistance Flatness ⁱ	R _{ON} Flatness	v+=4.5 v, v _D =1 v oi 3.5 v, i _S =	V = 4.5 V, V _D = 1 V 6/ 6.5 V, Ig = 60 HbV				9			
Switch Off Leakage Current ^a	I _{S(off)}	V+ = 5.5 V		Room Full	- 2 - 15		2 15			
	I _{D(off)}	$V_S = 1 \text{ V or } 4 \text{ V}, V_D = 4 \text{ V or } 3 \text{ V}$	Full Room Full Room Full Room Full Full	Room Full	- 2 - 15		2 15	nA		
Channel On Leakage Current ^a	I _{D(on)}	$V_{+} = 5.5 V$ $V_{D} = V_{S} = 1 V \text{ or } 4 V, \text{ sequence each}$	n switch on	Room Full	- 2 - 15		2 15			
Digital Control				•						
Logic High Input Voltage	V _{INH}	V+ = 5 V		Full	2			V		
Logic Low Input Voltage	V_{INL}	V+= 3 V	Full			0.8				
Input Current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2 \text{ V or } 0.8 \text{ V}$	Full	- 1		1	μΑ			
Dynamic Characteristics										
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG94)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$ see fig. 2		Room Full		73	94 104			
Break-Before-Make Time ^e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$ see fig. 4		Room Full	2	29		ns		
Enable Turn-On Time ^e	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 3.5 V (DG94 V _{AX} = 0 V, V _{S1b} = 3.5 V (DG94		Room Full		74	94 104			
Enable Turn-Off Time ^e	t _{OFF(EN)}	see fig. 3		Room Full		38	57 61			
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \text{ , } V_{GEN} =$	0 V	Room		20		рC		
Off Isolation ^{e, h}	OIRR	$R_1 = 1 \text{ k}\Omega, f = 100 \text{ kHz}$		Room		- 81		dB		
Crosstalk ^e	X _{TALK}	11 - 1 K22, 1 - 100 K112		Room		- 85		uБ		
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room Room		22 24				
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408 DG9409	Room Room		223 113		pF		
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room		244				
Power Supplies				1						
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ		
117 ** * *						l		•		

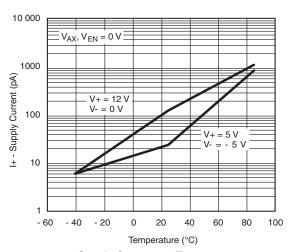

SPECIFICATIONS (Sir	ngle Suppl	y 3 V)							
		Test Conditions Unless Otherwise Specifi V+ = 3 V, ± 10 %, V- = 0 V			- 4(Limits O °C to 85	s °C		
Parameter	Symbol	$V_{\overline{EN}} = 0.4 \text{ V or } 1.8 \text{ V}^{f}$	V	Temp.b	Min.c	Typ.d	Max.c	Unit	
Analog Switch				•		, ,,			
Analog Signal Range ^e	V _{ANALOG}			Full	0		3	V	
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V or } 2.2 \text{ V}, I_{\xi}$	_S = 5 mA	Room Full		12	25.5 26.5		
R _{ON} Match Between Channels ^g	ΔR_{ON}	V+ = 2.7 V, V _D = 0.5 V or 2.2 V, I	c = 5 mA	Room			3.6	Ω	
On- Resistance Flatness ⁱ	R _{ON} Flatness	V = 2.7 V, V _D = 0.0 V 0. 2.2 V,	5 - 0 1121	Room			13		
Switch Off Leakage Current ^a	I _{S(off)}	V+ = 3.3 V		Room Full	- 2 - 15		2 15		
Switch Off Leakage Current	I _{D(off)}	$V_S = 2 \text{ V or } 1 \text{ V, } V_D = 1 \text{ or } 2$	2 V	Room Full	- 2 - 15		2 15	nA	
Channel On Leakage Current ^a	I _{D(on)}	$V_D = V_S = 1 V \text{ or } 2 V, \text{ sequence eac}$	h switch on	Room Full	- 2 - 15		2 15		
Digital Control				ı	ı	1			
Logic High Input Voltage	V_{INH}			Full	1.8			V	
Logic Low Input Voltage	V_{INL}			Full			0.4		
Input Current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 1.8 \text{ V or } 0.4 \text{ V}$	Full	- 1		1	μΑ		
Dynamic Characteristics				T	T	1			
Transition Time	t _{TRANS}	$V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, \text{ (DG9-V}_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, \text{ (DG9-See fig. 2)}$	408) 9409)	Room Full		140	165 182		
Break-Before-Make Time	t _{BBM}	$V_{S(all)} = V_{DA} = 1.5 V$ see fig. 4		Room Full	2	63		ns	
Enable Turn-On Time	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 1.5 V (DG9- V _{AX} = 0 V, V _{S1b} = 1.5 V (DG9	408)	Room Full		140	162 178		
Enable Turn-Off Time	t _{OFF(EN)}	see fig. 3		Room Full		76	97 104		
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \text{ , } V_{GEN} =$	0 V	Room		7		рC	
Off Isolation ^{e, h}	OIRR	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$		Room		- 81		dB	
Crosstalk ^e	X _{TALK}	1 = 100 KHZ, HE = 1 KZZ		Room		- 85		uБ	
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 1.8 \text{ V}$	DG9408 DG9409	Room Room		23 25			
D : 0" 0 :: 9	C-	f = 1 MHz, V _D = 0 V, V _{EN} = 1.8 V	DG9408	Room		230		~ F	
Drain Off Capacitance ^e	C _{D(off)}	$I = I \text{ IVIDZ}, V_D = U V, V_{EN} = I.8 V$	DG9409	Room		120		pF	
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room		256 147			
Power Supplies			DG9409	Room		147			
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ	
Notes:	•				<u>I</u>	<u> </u>		1""	

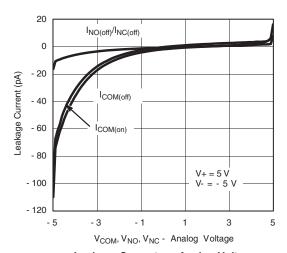
- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DON} = R_{DON} Max R_{DON} Min$.
- h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
- i. R_{DON} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

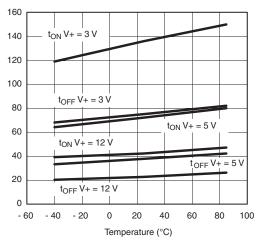

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


 $\rm R_{ON}$ vs. $\rm V_{COM}$ and Single Supply Voltage

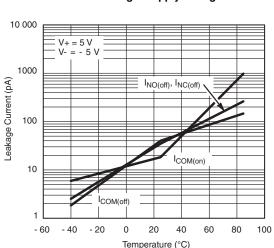

R_{ON} vs. Analog Voltage and Temperature


Leakage Current vs. Analog Voltage

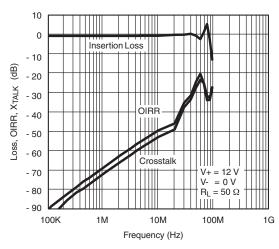
R_{ON} vs. Analog Voltage and Temperature

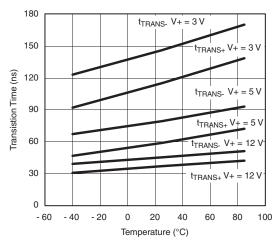


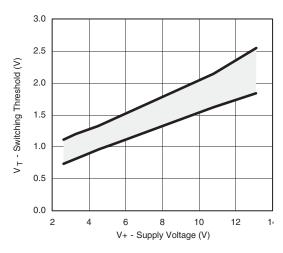
Supply Current vs. Temperature

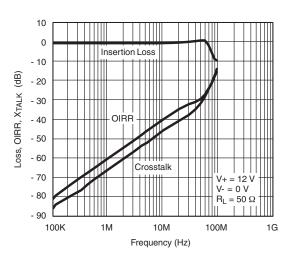


Leakage Current vs. Analog Voltage

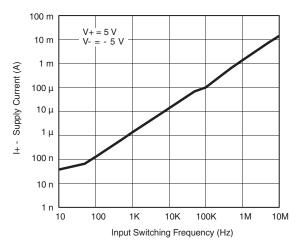

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Switching Time vs. Temperature and Single Supply Voltage


Leakage Current vs. Temperature


Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9408)

Transition Time vs. Temperature and Single Supply Voltage


Switching Threshold vs. Supply Voltage

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9409)

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (Typical Channel)

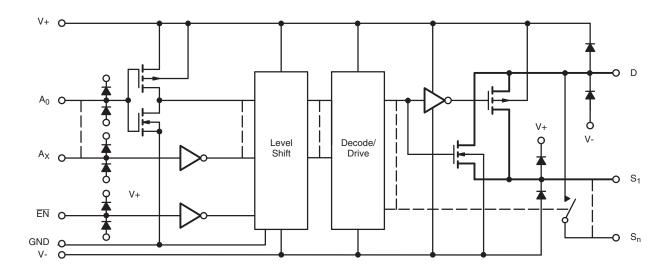


Figure 1.

TEST CIRCUITS

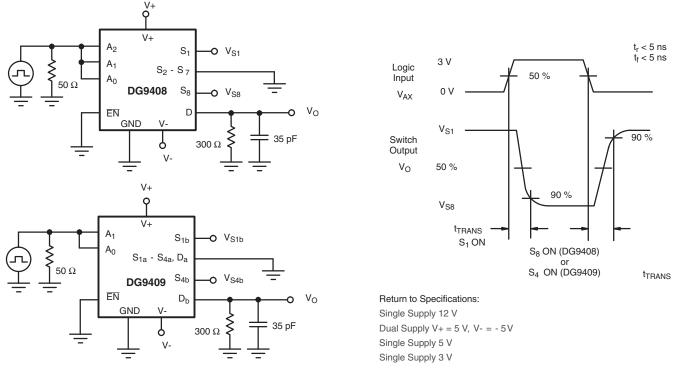


Figure 2. Transition Time

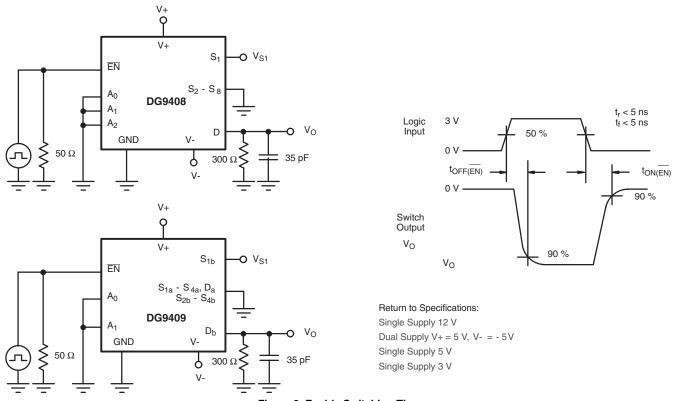
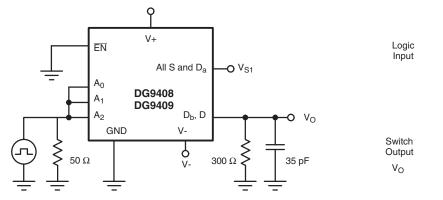
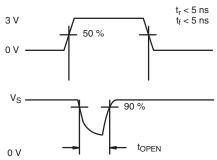




Figure 3. Enable Switching Time

TEST CIRCUITS

Return to Specifications:

Single Supply 12 V

Dual Supply V+ = 5 V, V- = -5 V

Single Supply 5 V

Single Supply 3 V

Figure 4. Break-Before-Make Interval

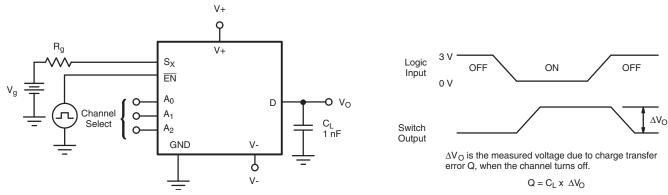


Figure 5. Charge Injection

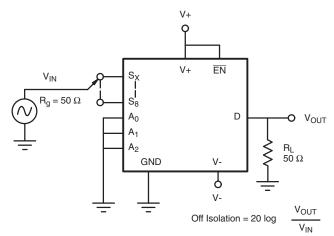


Figure 6. Off Isolation

TEST CIRCUITS

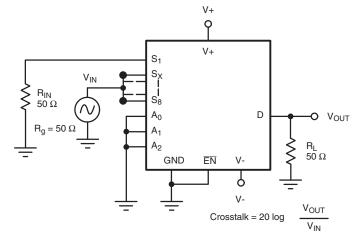


Figure 7. Crosstalk

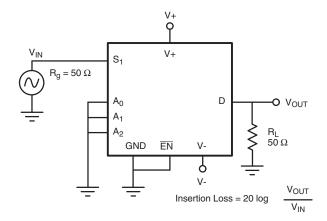
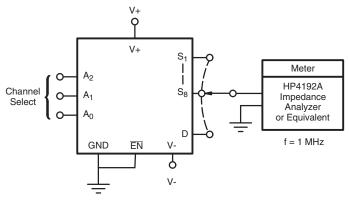
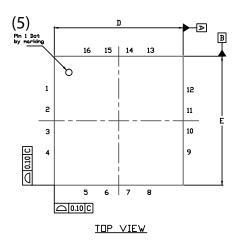
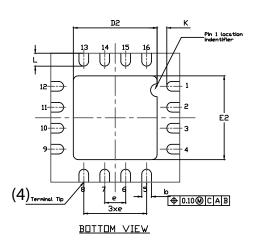
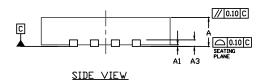


Figure 8. Insertion Loss


Figure 9. Source Drain Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71870.

QFN 4x4-16L Case Outline

	VARIATION 1					VARIATION 2						
DIM	MI	LLIMETE	RS ⁽¹⁾		INCHES		М	LLIMETER	S ⁽¹⁾		INCHES	
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
A3		0.20 ref.			0.008 ref.		0.20 ref.					
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014
D		4.00 BSC		0.157 BSC		4.00 BSC						
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
е		0.65 BSC			0.026 BSC		0.65 BSC			0.026 BSC		
Е		4.00 BS0	<u> </u>		0.157 BSC		4.00 BSC				0.157 BSC	
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
K		0.20 min.		0.008 min.			0.20 min.			0.008 min.		
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020
N ⁽³⁾		16			16		16		16			
Nd ⁽³⁾		4			4			4	4			
Ne ⁽³⁾		4			4			4			4	

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: S13-0893-Rev. B, 22-Apr-13

DWG: 5890

Revision: 22-Apr-13

Document Number: 71921

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)