Vishay Semiconductors

Hyperfast Rectifier, 4 A FRED Pt®

DPAK (TO-252AA)

Circuit configuration

PRIM

IARY CHARACTERISTICS							
I _{F(AV)}	4 A						
V _R	200 V						
V _F at I _F	0.71 V						
1 (1	00						

t_{rr} (typ.) 23 ns 175 °C T_{.1} max. DPAK (TO-252AA) Package

Single

FEATURES

- · Hyperfast recovery time
- 175 °C max. operating junction temperature
- Output rectification freewheeling
- Low forward voltage drop reduced Q_{rr} and soft recovery
- Low leakage current
- AEC-Q101 qualified
- · Meets JESD 201 class 2 whisker test
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Peak repetitive reverse voltage	V _{RRM}		200	V
Average rectified forward current	I _{F(AV)}	T _C = 164 °C	4	
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	80	А
Peak repetitive forward current	I _{FM}	T_{C} = 164 °C, f = 20 kHz, d = 50 %	8	
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	200	-	-		
Forward voltage	Ň	I _F = 4 A	-	0.87	0.95	V	
Forward voltage V _F	I _F = 4 A, T _J = 150 °C	-	0.71	0.80			
Poverse leakage ourrent	1	$V_R = V_R$ rated	-	-	3		
Reverse leakage current I _R		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	2	20	μA	
Junction capacitance	CT	V _R = 600 V	-	17	-	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8	-	nH	

Revision: 19-Feb-2021

1

Document Number: 94766

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

COMPLIANT

HALOGEN

FREE

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS			MAX.	UNITS	
		$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t =$	100 A/µs, V _R = 30 V	-	23	-		
Boueros recoveru timo	+	$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t =$	50 A/µs, V _R = 30 V	-	24	-	- ns	
Reverse recovery time	t _{rr}	T _J = 25 °C		-	20	-		
		T _J = 125 °C		-	27	-		
Pools recovery ourrent	1	T _J = 25 °C	I _F = 4 A dI _F /dt = 200 A/μs V _B = 160 V	-	2	-	А	
Peak recovery current	I _{RRM}	T _J = 125 °C		-	3.4	-	A	
	0	$T_J = 25 \ ^{\circ}C$	VR - 100 V	-	20	-	50	
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	46	-	nC	

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C	
Thermal resistance, junction to case per leg	R _{thJC}		-	2.7	3.2	°C/W	
Approximate weight				0.3		g	
				0.01		oz.	
Marking device		Case style DPAK (TO-252AA)		4EWH	02FNH		

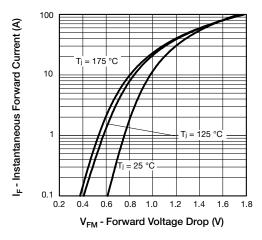


Fig. 1 - Typical Forward Voltage Drop Characteristics

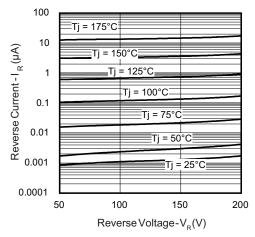
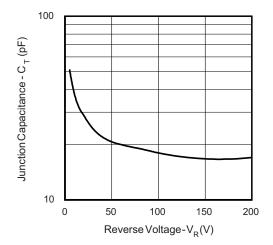
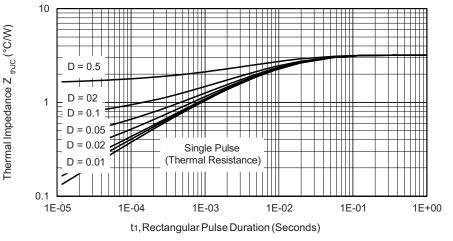
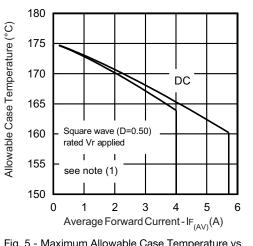
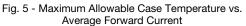
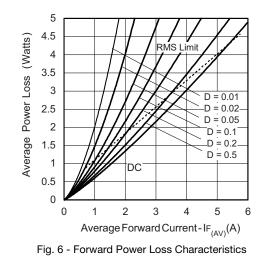


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Vishay Semiconductors


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Revision: 19-Feb-2021

3

Document Number: 94766

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

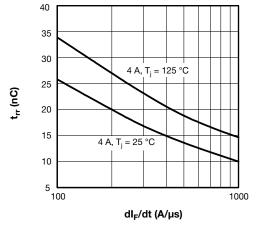


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

Note

- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC}$;
- $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \ x \ \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \ x \ \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \ \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

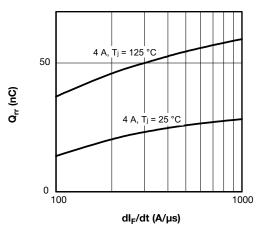


Fig. 8 - Typical Stored Charge vs. dl_F/dt

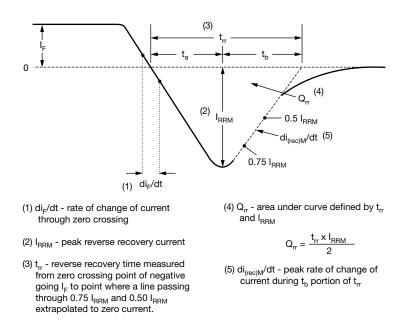


Fig. 9 - Reverse Recovery Waveform and Definitions

Vishay Semiconductors

ORDERING INFORMATION TABLE

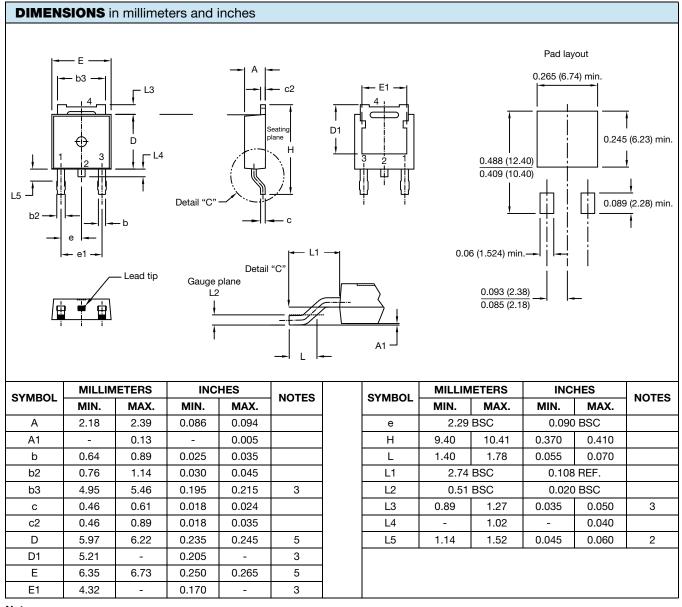
www.vishay.com

SHAY

Device code	VS-	4	E	w	н	02	FN	TRL	н	М3
		2	3	4	5	6	7	8	9	10
	1 2 3	- C - C	ishay Sen urrent rati ircuit conf	ing (4 = 4 figuration	4 A)	oduct				
	4	- P	= single (ackage id ′ = DPAK	entifier:						
	5 6 7	- V	= hyperfa oltage rati N = TO-25	ing (02 =	-)				
	8		 None = tube TR = tape and reel 							
	9	•	TRL = tap TRR = ta = AEC-Q	pe and r	eel (righ		-			
	10		nvironmei 3 = halog	-		complia	nt, and	terminat	tions lea	ad (Pb)-f

ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-4EWH02FNHM3	75	3000	Antistatic plastic tube					
VS-4EWH02FNTRHM3	2000	2000	13" diameter reel					
VS-4EWH02FNTRLHM3	3000	3000	13" diameter reel					
VS-4EWH02FNTRRHM3	3000	3000	13" diameter reel					

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95519				
Part marking information	www.vishay.com/doc?95518				
Packaging information	www.vishay.com/doc?95033				
SPICE model	www.vishay.com/doc?95381				


Revision: 19-Feb-2021 5 Document Number: 94766 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Outline Dimensions

Vishay Semiconductors

DPAK (TO-252AA)

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

⁽²⁾ Lead dimension uncontrolled in L5

⁽³⁾ Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad

⁽⁴⁾ Dimensions D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁵⁾ Outline conforms to JEDEC[®] outline TO-252AA

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)