

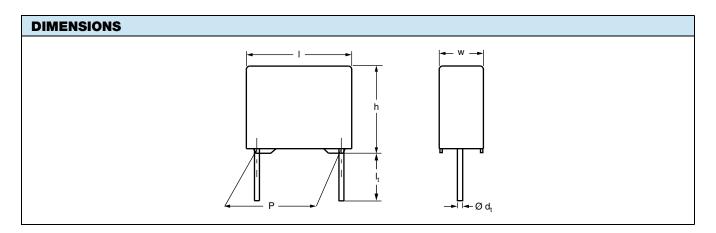
DC Film Capacitors MKT Radial Potted Type

FEATURES

 10 mm lead pitch. Supplied loose in box and taped on reel or ammopack

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS COMPLIANT

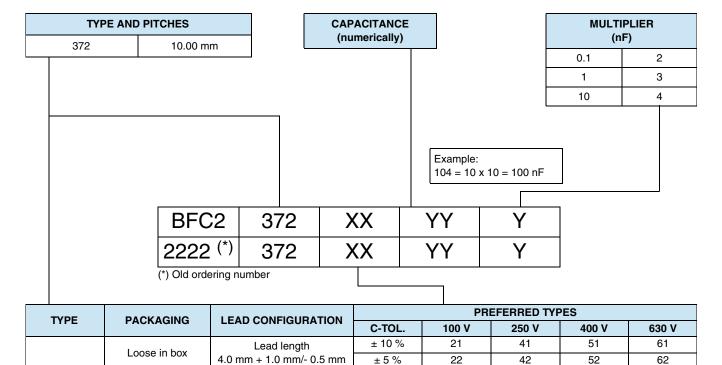

APPLICATIONS

Blocking and coupling, bypass and energy reservoir

QUICK REFERENCE DATA	
Capacitance tolerance	± 10 %, ± 5 %
Capacitance range (E12 series)	0.0047 μF to 0.68 μF
Rated DC voltage	100 V, 250 V, 400 V, 630 V
Rated AC voltage	63 V, 160 V, 220 V, 250 V
Climatic testing class (according to IEC 60068-1)	55/105/56
Rated temperature	85 °C
Maximum application temperature	105 °C
Performance grade	Grade 1 (long life)
Leads	Tinned wire
Reference standards	IEC 60384-2
Dielectric	Polyester film
Electrodes	Metallized
	Mono construction
Construction	
Encapsulation	Flame retardant plastic case and epoxy resin (UL-class 94 V-0)
Marking	C-value; tolerance; rated voltage; manufacturer's symbol; year and week of manufacturer; manufacturer's type

Note

• For more detailed data and test requirements, contact dc-film@vishay.com



COMPOSITION OF CATALOG NUMBER

Taped on reel (1)

Ammopack (1)

± 10 %

±5%

± 10 %

±5%

25

26

28

29

45

46

48

49

55

56

58

59

65

66

68

69

Note

372

 $H^{(1)} = 18.5 \text{ mm}$

 $P_0 = 12.7 \text{ mm}$

Reel diameter = 356 mm $H^{(1)} = 18.5 mm$

 $P_0 = 12.7 \text{ mm}$

SPECIFIC REFERENCE DATA							
DESCRIPTION			VA	LUE			
Tangent of loss angle:	at 1 kHz		at 10 kHz			at 100 kHz	
C ≤ 0.1 µF	≤ 75 x 10 ⁻⁴		≤ 130 x 10 ⁻⁴			≤ 250 x 10 ⁻⁴	
0.1 μF < C ≤ 0.68 μF	$\leq 75 \times 10^{-4}$		≤ 130 x 10 ⁻⁴			$\leq 250 \times 10^{-4}$	
Potod voltage pulse slope (dl.l/dt)- et	100 V _{DC}	2	50 V _{DC}	400 V _{DC}		630 V _{DC}	
Rated voltage pulse slope (dU/dt) _R at	34 V/μs	50 V/μs		80 V/μs		120 V/µs	
R between leads, for C \leq 0.33 μ F							
at 10 V; 1 min	$>$ 15 000 M Ω						
at 100 V; 1 min		$>$ 15 000 M Ω		> 30 000 Mg	2	$>$ 30 000 M Ω	
RC between leads, for C > 0.33 µF at 100 V; 1 min	> 5000 s						
R between interconnecting leads and case (foil method)	> 30 000 MΩ						
Withstanding (DC) voltage (cut off current 10 mA) $^{(1)}$; rise time \leq 1000 V/s	160 V; 1 min	400) V; 1 min	640 V; 1 mir	1	1008 V; 1 min	
Withstanding (DC) voltage between leads and case	200 V; 1 min	V; 1 min 500 V;		800 V; 1 mir	1	1260 V; 1 min	
Maximum application temperature	105 °C						

Note

⁽¹⁾ For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139

⁽¹⁾ See "Voltage Proof Test for Metallized Film Capacitors": www.vishay.com/doc?28169

Vishay BCcomponents

UND (V) OA	ELEC	TRICAL	L DATA								
UND (HE) (HF) (HF) (HF) (HF) (HF) (HF) (HF) (HF											
	URDC	CAP.		MASS							C-VALUE
	(V)	(μF)					C-TOL. =	C-TOL. =	C-TOL. =	C-TOL. =	
100					(SPQ)	(SPQ)	(SPQ)	(SPQ)	(SPQ)		YYY
0.12			T	U _{RAC} =	63 V; PITCH	= 10.0 mm ±	0.4 mm; d _t =	0.60 mm ± 0	.06 mm	1	
100											_
100											
100 0.22			40 x 100 x 12 5	0.65			_	-			-
100			4.0 X 10.0 X 12.0	0.00	(1000)	(1000)	(1400)	(1400)	(750)	(750)	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	-									
0.47		0.33									334
1.47		0.39	50 v 11 0 v 12 5	0.97	21	22	25	26	28	29	394
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.0 X 11.0 X 12.3	0.67	(1000)	(1000)	(1100)	(1100)	(600)	(600)	
Variable			6.0 x 12.0 x 12.5	1.15			-	-	-	-	
250 250		0.68					(/			(500)	684
250		0.047		U _{RAC} = 1	160 V; PITCH	= 10.0 mm ±	0.4 mm; a _t =	: 0.60 mm ± ().06 mm	1	472
250 0.068 0.082 0.002 0.0068 0.002 0.010 0.010 0.010 0.012 0.002 0.002 0.002 0.002 0.0012 0.015 0.0068 0.0082 0.0082 0.0082 0.0082 0.0012 0.015 0.015 0.015 0.015 0.015 0.015 0.0012 0.015 0.0012 0.015 0.0012 0.0013 0.0012											
250 0.082			40 x 10 0 x 12 5	0.65			-	-	-	-	
0.10			4.0 X 10.0 X 12.5						(750)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250										
0.15			5 0 ·· 11 0 ·· 10 5	0.07	41	42	45	46	48	49	124
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.15	5.0 X 11.0 X 12.5	0.87	(1000)	(1000)	(1100)	(1100)	(600)	(600)	154
1.00 1.00			60 x 12 0 x 12 5	1 15							184
100 100		0.22			` '	, ,	()	` '	` '	(500)	224
400 0.0056 0.0068 0.0062 0.010 0.012 0.015 0.015 0.018 0.022 0.033 0.039 0.082 0.082 0.088		0.0047	T	U _{RAC} = 2	220 V; PITCH	= 10.0 mm ±	0.4 mm; d _t =	0.60 mm ± 0	0.06 mm	1	470
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											_
400 0.015 0.018 0.022 0.027 0.033 0.039 0.056 0.068 0.082			4.0 x 10.0 x 12.5	0.65							
400 0.018 0.022 0.027 0.033 0.039 0.047 5.0 x 11.0 x 12.5 0.87 51 52 55 56 56 58 59 473 393 30.082 0.082 0.0 x 12.0 x 12.5 1.15 51 52 55 56 56 58 59 683 6.0 x 12.0 x 12.5 0.65 61 62 65 66 68 69				0.00	(1000)	(1000) (1000)	(1400)	(1400) (1400)	(750) (7	(750)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	0.018									183
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.022									223
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.027									273
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				ļ							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					51	52	55	56	58	59	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.0 x 11.0 x 12.5	0.87							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					F4	50		50	50	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6.0 x 12.0 x 12.5	1.15							
630 0.010 0.012 0.015 0.015 0.018 0.022 0.027 0.033 0.039 6.0 x 12.0 x 12.5 1.15 61 62 62 62 62 65 65 66 68 69 (1400) (1400) (1400) (1100) (1100) (1100) (600) (600) (600) 333 0.039 6.0 x 12.0 x 12.5 1.15 61 62 62 62 65 66 68 69 393			ı	U _{RAC} = 2						. , ,	
630 0.015 0.018 0.022 0.65 0.65 0.65 0.65 0.000		0.010									103
630 0.018 0.022 0.05 (1000) (1000) (1400) (1400) (750) (750) (750) 183 183 0.022 0.027 0.033 5.0 x 11.0 x 12.5 0.87 (1000) (1000) (1000) (1100) (1100) (600) (600) (600) 333 0.039 6.0 x 12.0 x 12.5 1.15 61 62 65 66 68 69 393					61	60	65	:5 GG	60 60	60	
630 0.022 23 0.027 0.033 5.0 x 11.0 x 12.5 0.87 61 62 65 66 68 69 273 0.039 6.0 x 12.0 x 12.5 1.15 61 62 65 66 68 69 393			4.0 x 10.0 x 12.5	0.65							
0.027 0.033 5.0 x 11.0 x 12.5 0.87 61 62 65 66 68 69 273 0.039 6 0 x 12 0 x 12.5 1.15 61 62 65 66 68 69 333 0.039 6 0 x 12 0 x 12.5 1.15 61 62 65 66 68 69 393	630				(1000)	(1000)	(1.00)	(1.100)	(/50)	(1.00)	
0.033 5.0 x 11.0 x 12.5 0.87 (1000) (1000) (1100) (1100) (600) (600) 333 0.039 6.0 x 12.0 x 12.5 1.15 61 62 65 66 68 69 393	550										
0.039 6.0 x 12.0 x 12.5 1.15 61 62 65 66 68 69 393			5.0 x 11.0 x 12.5	0.87							
				 	, ,		· , ,	, ,	. ,		
			6.0 x 12.0 x 12.5	1.15							

Notes

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- $^{(2)}$ H = in-tape height; P_0 = sprocket hole distance; for detailed specifications refer to packaging information: <u>www.vishay.com/doc?28139</u>
- (3) Weight for short lead product only

MOUNTING

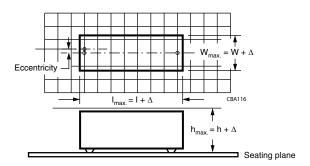
Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- · For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements On Printed-Circuit Board

The maximum space for length (I_{max.}), width (w_{max.}) and height (h_{max.}) of film capacitors to take in account on the printed-circuit board is shown in the drawing:

- For products with pitch \leq 15 mm, $\Delta w = \Delta l = 0.3$ mm and $\Delta h = 0.1$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta w = \Delta l = 0.5$ mm and $\Delta h = 0.1$ mm

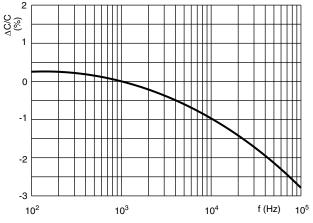
Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

SOLDERING

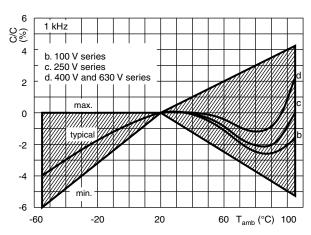
For general soldering conditions and wave soldering profile, we refer to the application note:

"Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

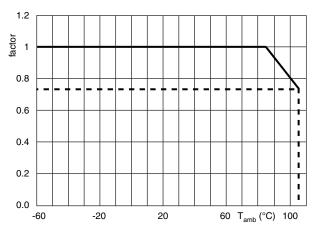
Storage Temperature

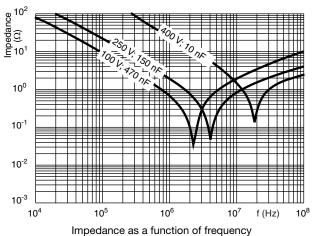

 T_{stg} = -25 °C to +35 °C with RH maximum 75 % without condensation

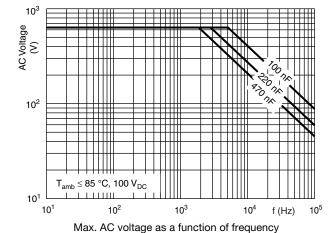

Ratings and Characteristics Reference Conditions

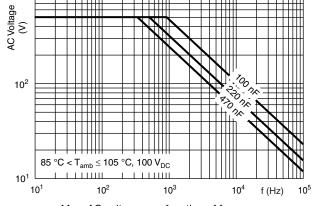

Unless otherwise specified, all electrical values apply to an ambient free air temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.


CHARACTERISTICS

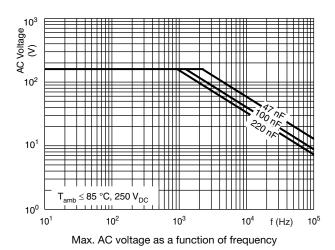


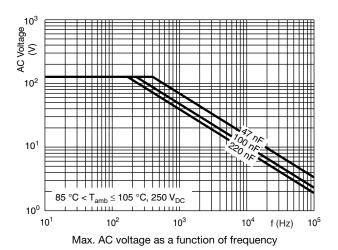

Capacitance as a function of ambient temperature

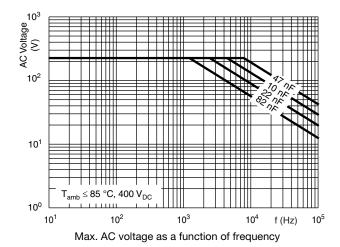


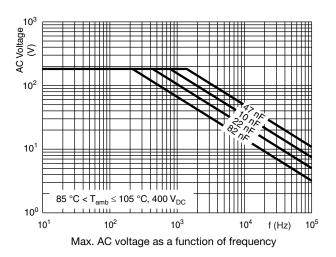
Max. DC and AC voltage as a function of temperature

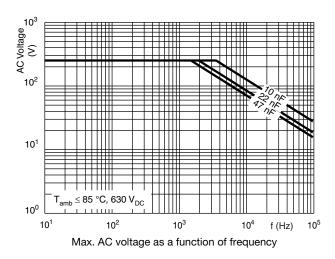
impedance as a function of frequency

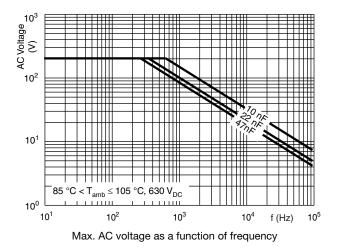


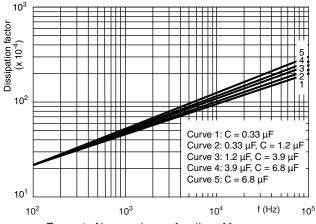


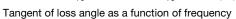

Max. AC voltage as a function of frequency


10³

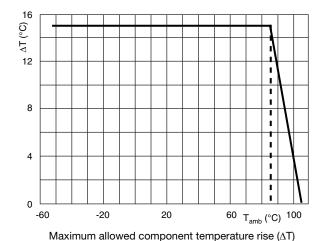








Maximum RMS current (sinewave) as a function of frequency


U_{AC} is the maximum AC voltage depending on the ambient temperature in the curves "Max. RMS voltage and AC current as a function of frequency".

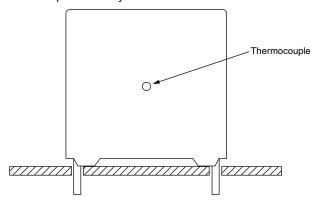
Insulation resistance as a function of the ambient temperature (typical curve)

as a function of the ambient temperature T_{amb} (°C)

THICKNESS IN mW/°C					
W _{MAX.} HEAT CONDUCTIVITY (mW/°C)					
(mm)	PITCH 10.0 mm				
4.0	6.0				
5.0	7.5				
6.0	9.0				

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors", www.vishay.com/doc?28147.

The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C) .

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishay.com

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{BDC})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than $2\sqrt{2} \times U_{RAC}$ to avoid the ionization inception level
- 3. The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{RDC} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{1} \left(\frac{dU}{dt}\right)^{2} \times \left(dt < U_{RDC} \times \left(\frac{dU}{dt}\right)_{rated}\right)$$

T is the pulse duration.

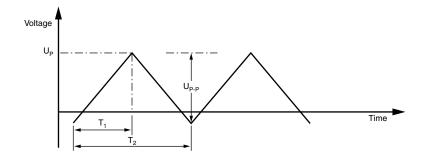
- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Vishay BCcomponents

VOLTAGE CONDITIONS FOR 6 ABOVE					
ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 105 °C			
Maximum continuous RMS voltage	U _{RAC}	See "Max. AC voltage as function of temperature" per characteristics			
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	U _{RAC}			
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{RDC}	1.3 x U _{RDC}			

Example

C = 330 nF - 63 V used for the voltage signal shown in next drawing.


 $U_{P-P} = 40 \text{ V}$; $U_P = 35 \text{ V}$; $T_1 = 100 \text{ }\mu\text{s}$; $T_2 = 200 \text{ }\mu\text{s}$

The ambient temperature is 35 °C

Checking conditions:

- 1. The peak voltage $U_P = 35 \text{ V}$ is lower than 63 V_{DC}
- 2. The peak-to-peak voltage 40 V is lower than $2\sqrt{2}$ x 40 V_{AC} = 113 U_{P-P}
- 3. The voltage pulse slope (dU/dt) = 40 V/100 μ s = 0.4 V/ μ s This is lower than 60 V/ μ s (see specific reference data for each version)
- 4. The dissipated power is 16.2 mW as calculated with fourier terms. The temperature rise for $W_{max.} = 3.5$ mm and pitch = 5 mm will be 16.2 mW/3.0 mW/°C = 5.4 °C. This is lower than 15 °C temperature rise at 35 °C, according figure "Max. allowed component temperature rise"
- 5. Not applicable
- 6. Not applicable

Voltage Signal

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

GROUP C INSPECTION REQUIREMENTS					
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS			
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1					
4.1 Dimensions (detail)		As specified in chapters "General Data" of this specification			
4.3.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF $<$ C \leq 10 μ F at 10 kHz for C $>$ 10 μ F at 1 kHz				
4.3 Robustness of terminations	Tensile and bending	No visible damage			
4.4 Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s				

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1		
4.14 Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: min. 1 h, max. 2 h	
4.4.2 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 2$ % of the value measured initiall
	Tangent of loss angle	Increase of tan δ \leq 0.005 for: C \leq 100 nF or \leq 0.010 for: 100 nF $<$ C \leq 220 nF or \leq 0.015 for: 220 nF $<$ C \leq 470 nF and \leq 0.003 for: C $>$ 470 nF Compared to values measured in 4.3.1
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1		
4.6.1 Initial measurements	Capacitance Tangent of loss angle: for $C \le 470$ nF at 100 kHz for 470 nF < $C \le 10$ µF at 10 kHz for $C > 10$ µF at 1 kHz	No visible damage
4.6 Rapid change of temperature	$\theta A = -55$ °C $\theta B = +105$ °C 5 cycles Duration t = 30 min	
4.7 Vibration	Visual examination Mounting: see section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage
SUB-GROUP C1B PART OF SAMPLE		
OF SUB-GROUP C1 4.7.2 Final inspection	Visual examination	No visible damage
4.9 Shock	Mounting: see section "Mounting" of this specification Pulse shape: half sine Acceleration: 490 m/s ² Duration of pulse: 11 ms	
4.9.3 Final measurements	Visual examination	No visible damage
	Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.6
	Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.6.1
	Insulation resistance	As specified in section "Insulation Resistance" of this specification

	JP C INSPECTION REQUIF		
	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1 COMBINED SAMPLE CIMENS OF SUB-GROUPS ID C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: +105 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: -55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	Prinal measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.005 for: $C > 470$ nF Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GI	ROUP C2		
4.11	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH	
4.11.1 I	nitial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3 F	Final measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.
		Tangent of loss angle	Increase of tan $\delta \le 0.005$ Compared to values measured in 4.11.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB GF	ROUP C3		
4.12 E	Endurance	Duration: 2000 h 1.25 x U _{RDC} at 85 °C 0.8 x 1.25 U _{RDC} at 105 °C	

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB GROUP C3		
4.12.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF $<$ C \leq 10 μ F at 10 kHz for C $>$ 10 μ F at 1 kHz	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % compared to values measured in 4.12.1
	Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.12.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C4		
4.13 Charge and discharge	10 000 cycles Charged to U_{RDC} Discharge resistance: $R = \frac{U_R}{C \times 2.5 \times (dU/dt)_R}$	
4.13.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF $<$ C \leq 10 μ F at 10 kHz for C $>$ 10 μ F at 1 kHz	
4.13.3 Final measurements	Capacitance	$ \Delta C/C \le 3$ % compared to values measured in 4.13.1
	Tangent of loss angle	Increase of tan δ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.13.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)

>>点击查看相关商品