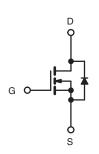

www.vishay.com

Vishay Siliconix

N-Channel 30 V (D-S) MOSFET


PRODUCT SUMMARY						
V _{DS} (V)	30					
$R_{DS(on)}$ max. (Ω) at V_{GS} = 10 V	0.0060					
$R_{DS(on)}$ max. (Ω) at V_{GS} = 4.5 V	0.0080					
Q _g typ. (nC)	12					
I _D (A) ^{a, g}	35					
Configuration	Single					

FEATURES

- TrenchFET[®] power MOSFET
- 100 % R_g and UIS tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- DC/DC converter
 - Notebook
 - POL

N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK 1212-8
Lead (Pb)-free and halogen-free	SiSH402DN-T1-GE3

PARAMETER Drain-source voltage Gate-source voltage		SYMBOL	LIMIT	UNIT	
		V _{DS}	30		
		V _{GS}	± 20	V	
Continuous drain current ($T_J = 150 \ ^{\circ}C$)	T _C = 25 °C		35 ^{a, g}	_	
	T _C = 70 °C		35 ^g		
	T _A = 25 °C	I _D	19 ^{b, c}	□ .	
	T _A = 70 °C		15 ^{b, c}	— A	
Pulsed drain current		I _{DM}	70		
Avalanche current	L = 0.1 mH	I _{AS}	35		
Avalanche energy		E _{AS}	61	mJ	
	T _C = 25 °C	1	43	A	
Continuous source-drain diode current	T _A = 25 °C	I _S	3.2 ^{b, c}		
Maximum power dissipation	T _C = 25 °C		52		
	T _C = 70 °C		33	w	
	T _A = 25 °C	P _D	3.8 ^{b, c}		
	T _A = 70 °C		2 ^{b, c}		
Operating junction and storage temperature range		T _J , T _{stg} -55 to +150		°C	
Soldering recommendations (peak temperature) d, e			260		

THEDMAL DESIGTANCE DATINGS

THENMAL RESISTANCE RATIN	uj				
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	24	33	°C/W
Maximum junction-to-case (drain)	Steady state	R _{thJC}	1.9	2.4	0/11

Notes

a. Based on $T_C = 25 \ ^{\circ}C$

b. Surface mounted on 1" x 1" FR4 board

t = 10 s c.

c. t = 10 s
 d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK 1212-8SH is a leadless package within the PowerPAK 1212-8 package family. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
 e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
 f. Maximum under steady state conditions is 81 °C/W

Package limited

g.

S18-0697-Rev.B, 09-Jul-2018

1

Document Number: 75897

For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

RoHS

COMPLIANT

HALOGEN

FREE

www.vishay.com

SiSH402DN

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	L 050 ··· A	-	24	-	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-6	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1.15	-	2.2	V
Gate-source leakage	I _{GSS}	$V_{DS}=0~V,~V_{GS}=\pm~20~V$	-	-	± 100	nA
Zara gata valtaga drain aurrent	1	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	μA
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$	-	-	5	
On-state drain current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	50	-	-	А
	n n	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19 \text{ A}$	-	0.0048	0.0060	0
Drain-source on-state resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 16.6 \text{ A}$	-	0.0064	0.0080	Ω
Forward transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 19 \text{ A}$	-	82	-	S
Dynamic ^b			•			
Input capacitance	C _{iss}		-	1700	-	
Output capacitance	C _{oss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	-	350	-	pF
Reverse transfer capacitance	C _{rss}		-	140	-	
	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 19 \text{ A}$	-	28	42	
Total gate charge			-	12	21	
Gate-source charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 19 \text{ A}$	-	5.4	-	nC
Gate-drain charge	Q _{qd}		-	4.6	-	
Gate resistance	R _q	f = 1 MHz	-	1.2	2.4	Ω
Turn-on delay time	t _{d(on)}		-	25	40	
Rise time	t _r	$V_{DD} = 15 \text{ V}, \text{ R}_{\text{L}} = 1.5 \Omega$	-	20	30	
Turn-off delay time	t _{d(off)}	$I_D \cong 10$ Å, $V_{GEN} = 4.5$ V, $R_g = 1$ Ω	-	25	40	
Fall time	t _f		-	15	25	
Turn-on delay time	t _{d(on)}		-	12	20	ns
Rise time	t _r	$V_{DD} = 15 \text{ V}, \text{ R}_{\text{I}} = 1.5 \Omega$	-	10	15	
Turn-off delay time	t _{d(off)}	$I_D \cong 10$ Å, $V_{GEN} = 10$ V, $R_g = 1$ Ω	-	25	40	
Fall time	t _f		-	10	15	
Drain-Source Body Diode Characteristi	cs					
Continuous source-drain diode current	I _S	T _C = 25 °C	-	-	30	
Pulse diode forward current	I _{SM}		-	-	70	A
Body diode voltage	V _{SD}	I _S = 10 A, V _{GS} = 0 V	-	0.8	1.2	V
Body diode reverse recovery time	t _{rr}		-	25	50	ns
Body diode reverse recovery charge	Q _{rr}	I _F = 10 A, di/dt = 100 A/μs,	-	17	35	nC
Reverse recovery fall time	t _a	$T_{\rm J} = 25 ^{\circ}{\rm C}$	-	13	-	-
Reverse recovery rise time	t _b		_	12	_	ns

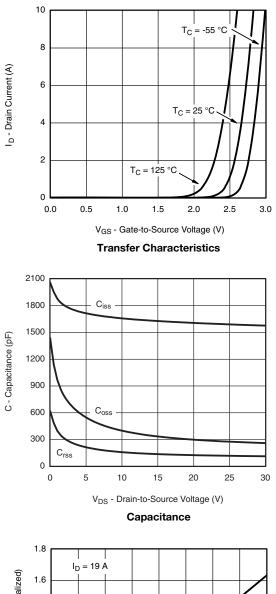
Notes

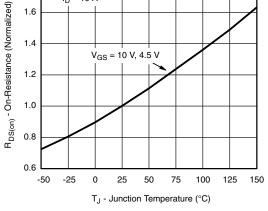
a. Pulse test: pulse width $\leq 300~\mu\text{s},~\text{duty}~\text{cycle} \leq 2~\%$

b. Guaranteed by design, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

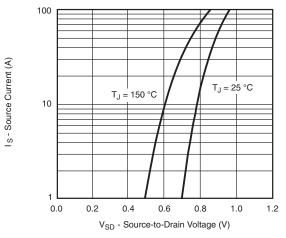
2

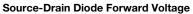


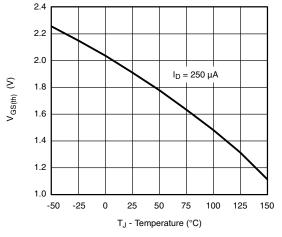

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

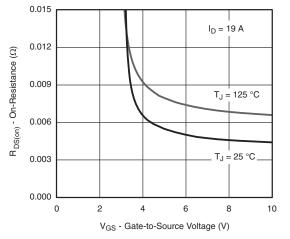
6 12 18 Qg - Total Gate Charge (nC) Gate Charge

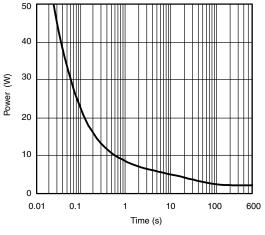

On-Resistance vs. Junction Temperature

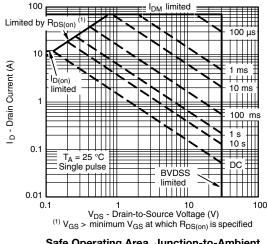

For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com



Vishay Siliconix

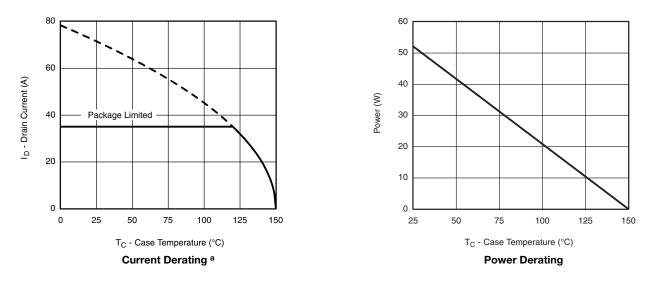

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



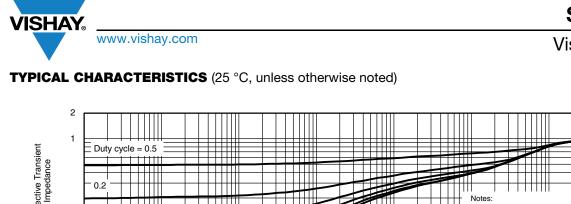


On-Resistance vs. Gate-to-Source Voltage

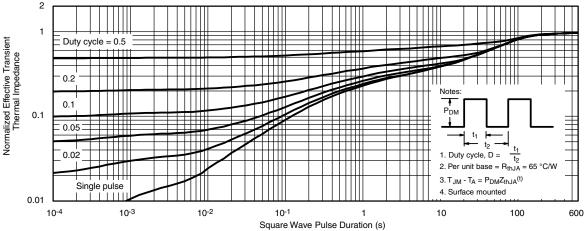
Single Pulse Power (Junction-to-Ambient)



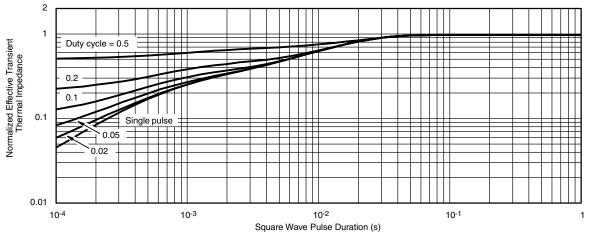
Safe Operating Area, Junction-to-Ambient


Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

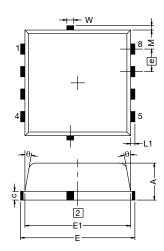


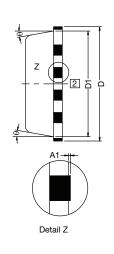
Note

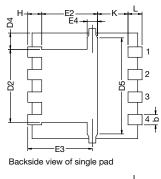

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

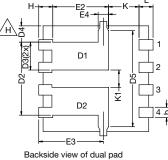
Vishay Siliconix

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75897.




Vishay Siliconix

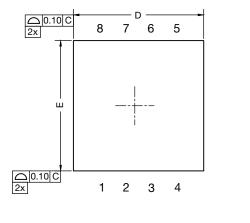
PowerPAK[®] 1212-8, (Single / Dual)

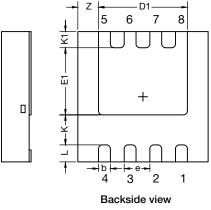
Notes

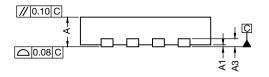
1. Inch will govern

2 Dimensions exclusive of mold gate burrs 3. Dimensions exclusive of mold flash and cutting burrs

MILLIMETERS INCHES DIM. NOM. MIN. NOM. MAX. MIN. MAX. 0.038 A 0.97 1.04 1.12 0.041 0.044 0.05 0.000 0.002 A1 0.00 --0.23 0.30 0.41 0.009 0.012 0.016 b с 0.23 0.28 0.33 0.009 0.011 0.013 D 3.30 0.126 3.20 3.40 0.130 0.134 D1 2.95 3.05 3.15 0.116 0.120 0.124 2.24 D2 1.98 2.11 0.078 0.083 0.088 0.89 0.019 0.035 D3 0.48 --D4 0.47 typ. 0.0185 typ D5 2.3 typ. 0.090 typ Е 3.20 3.30 3.40 0.126 0.130 0.134 E1 2.95 3.05 3.15 0.116 0.120 0.124 1.73 0.063 E2 1.47 1.60 0.058 0.068 1.85 E3 1.75 1.98 0.069 0.073 0.078 E4 0.034 typ. 0.013 typ. 0.65 BSC 0.026 BSC е Κ 0.86 typ. 0.034 typ. K1 0.35 0.014 --Н 0.30 0.41 0.51 0.012 0.016 0.020 0.30 0.56 0.012 0.022 0.43 0.017 L 0.20 0.002 0.005 0.008 L1 0.06 0.13 θ 0° -12° 0° -12° W 0.25 0.36 0.006 0.010 0.014 0.15 Μ 0.125 typ. 0.005 typ. ECN: S16-2667-Rev. M, 09-Jan-17 DWG: 5882 Document Number: 71656 1

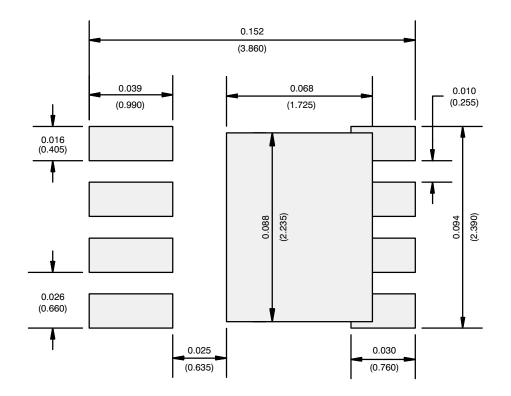

Revison: 09-Jan-17


For technical questions, contact: pmostechsupport@vishay.com



Vishay Siliconix

PowerPAK[®] 1212-SWLH



DIM		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.82	0.90	0.98	0.032	0.035	0.038	
A1	0	-	0.05	0	-	0.002	
A3		0.20 ref.			0.008 ref.		
b		0.30 BSC			0.012 BSC		
D	3.30 BSC			0.130 BSC			
D1	2.15	2.25	2.35	0.084	0.088	0.092	
E		3.30 BSC		0.130 BSC			
E1	1.60	1.70	1.80	0.063	0.067	0.071	
е		0.65 BSC			0.026 BSC		
К		0.76 typ.		0.030 typ.			
K1		0.41 typ.		0.016 typ.			
L		0.43 BSC		0.017 BSC			
Z		0.525 typ.		0.021 typ.			

1

RECOMMENDED MINIMUM PADS FOR PowerPAK® 1212-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. 单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)