

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	500				
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.85				
Q _g (Max.) (nC)	63				
Q _{gs} (nC)	11				
Q _{gd} (nC)	30				
Configuration	Single				

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distances between pins to meet the requirements of most safety specifications.

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	IRFP440PbF
Lead (Fb)-liee	SiHFP440-E3
SnPb	IRFP440
	SiHFP440

ABSOLUTE MAXIMUM RATINGS (T_C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	500	M	
Gate-Source Voltage			V _{GS}	± 20	V	
Continuous Drain Current	V _{GS} at 10 V	$T_{C} = 25 \degree C$ $T_{C} = 100 \degree C$	1_	8.8		
Continuous Drain Current	VGS at 10 V	T _C = 100 °C	I _D	5.6	A	
Pulsed Drain Current ^a			I _{DM}	35		
Linear Derating Factor		1.2	W/°C			
Single Pulse Avalanche Energy ^b			E _{AS}	480	mJ	
Repetitive Avalanche Current ^a			I _{AR}	8.8	A	
Repetitive Avalanche Energy ^a			E _{AR}	15	mJ	
Maximum Power Dissipation T _C = 25 °C			PD	150	W	
Peak Diode Recovery dV/dt ^c	dV/dt	3.5	V/ns			
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature) for 10 s				300 ^d		
Mounting Torque	6.20 or 1	12 oorour		10	lbf ∙ in	
Mounting Torque	0-32 OF 1	6-32 or M3 screw		1.1	N · m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 11 mH, R_g = 25 Ω , I_{AS} = 8.8 A (see fig. 12).

c. $I_{SD} \leq 8.8$ A, dI/dt ≤ 100 A/µs, $V_{DD} \leq V_{DS}$, $T_J \leq 150$ °C.

d. 1.6 mm from case.

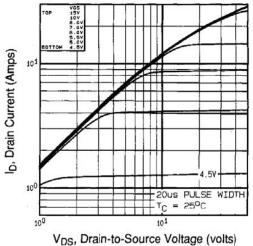
* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91228 S11-0444-Rev. B, 14-Mar-11

Vishay Siliconix

$\begin{split} \text{Maximum Junction-to-Ambient} & \text{R}_{\text{th}_{A}} & - & 40 \\ \hline \\ \text{Case-to-Sink, Flat, Greased Surface} & \text{R}_{\text{th}_{DS}} & 0.24 & - & & & & & & & & & & & & & & & & & $	THERMAL RESISTANCE RATI	NGS							
Case-to-Sink, Flat, Greased Surface R_{trics} 0.24 - °C/W SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UN Gate-Source Dreakdown Voltage V _{DOS} V _{DOS} = 250 µA 2.0 - 4.0 V Zero Gate Voltage Drain Current IDSS VDS = 50 V. Ty = 125 °C - 2.5 µA India Charge Qg VDS 5.0 -	PARAMETER	SYMBOL	TYP. MAX.		UNIT		UNIT		
Maximum Junction-to-Case (Drain) R_{PUC} - 0.83 SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) TYP. MAX. UN Static Static Vos Vos Vos TYP. MAX. UN Static Vos Vos Vos Vos Est conditions Min. TYP. MAX. UN Static Vos Vos Vos Vos Static Static Vos Static Vos Static Vos N. TYP. MAX. UN Gate-Source Treshold Votage Vos Vos Static Vos Vos Static Vos Static Vos Static Vos Static Vos Static Vos	Maximum Junction-to-Ambient	R _{thJA}	- 40						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24		-			°C/W	
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Static V_{DS} Temperature Coefficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 1 \text{ mA}$ - 0.78 - V/V Gate-Source Threshold Voltage $V_{QS}(T)_J$ Reference to 25 °C, $I_D = 1 \text{ mA}$ - 0.78 - 4.0 V Gate-Source Leakage $I_{QSS}(T)_J$ Nos = V_{QS}, $I_D = 250 \mu$ 2.0 - 4.0 V Gate-Source Leakage $I_{QSS}(T)_J$ VDS = 500 V, V_{QS} = 0 V - - 2.50 μ Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 500 V, V_{QS} = 0 V$ - - 2.50 μ Drain-Source On-State Resistance $R_{DS(W)}$ $V_{DS} = 50 V, I_D = 5.3 A^D$ - 0.85 Ω - 0.85 Ω Portand Cata Charge Q_g $V_{GS} = 10 V$ $I_D = 8.0 A, V_{DS} = 400 V$ - - 63 Cata Sate Charge Q_g $V_{GS} = 10 V$ $I_D = 8.0 A, V_{DS} = 400 V$ - - 10	Maximum Junction-to-Case (Drain)	R _{thJC}	-		0.83				
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Static V_{DS} Temperature Coefficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 1 \text{ mA}$ - 0.78 - V/V Gate-Source Threshold Voltage $V_{QS}(T)_J$ Reference to 25 °C, $I_D = 1 \text{ mA}$ - 0.78 - 4.0 V Gate-Source Leakage $I_{QSS}(T)_J$ Nos = V_{QS}, $I_D = 250 \mu$ 2.0 - 4.0 V Gate-Source Leakage $I_{QSS}(T)_J$ VDS = 500 V, V_{QS} = 0 V - - 2.50 μ Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 500 V, V_{QS} = 0 V$ - - 2.50 μ Drain-Source On-State Resistance $R_{DS(W)}$ $V_{DS} = 50 V, I_D = 5.3 A^D$ - 0.85 Ω - 0.85 Ω Portand Cata Charge Q_g $V_{GS} = 10 V$ $I_D = 8.0 A, V_{DS} = 400 V$ - - 63 Cata Sate Charge Q_g $V_{GS} = 10 V$ $I_D = 8.0 A, V_{DS} = 400 V$ - - 10			·						
Static VDS $V_{GS} = 0 V$, $I_D = 250 \mu A$ 500 - - V Orain-Source Breakdown Voltage V_{DS} $V_{GS} = 0 V$, $I_D = 250 \mu A$ 500 - - V Gate-Source Threshold Voltage $V_{GS} = V_{GS}$, $I_D = 250 \mu A$ - 0.78 - V/v Gate-Source Threshold Voltage $V_{GS} = V_{GS}$, $I_D = 250 \mu A$ - 0.78 - V/v Gate-Source Leakage I_{GSS} $V_{GS} = 250 \mu$ - - 4.0 V/v Gate-Source Leakage I_{GSS} $V_{GS} = 500 V$, $V_{GS} = 0 V$ - - 2.50 μ^{μ} Orain-Source On-State Resistance $R_{DS(cn)}$ $V_{GS} = 10 V$ $I_D = 5.3 A^D$ - 0.85 0 Porward Transconductance G_{css} $V_{GS} = 0 V$, $V_{DS} = 25 V$, $I_D = 5.3 A^D$ - 1300 - Input Capacitance C_{css} $V_{GS} = 0 V$, $V_{DS} = 25 V$, $I_D = 8.0 A$, $V_{DS} = 400 V$ - 1300 - Gate-Source Charge Q_{gd} $V_{GS} = 10 V$ I_D = 8.0 A, $V_{DS} = 400 V$	SPECIFICATIONS ($T_J = 25 \text{ °C}$, u	Inless otherw	ise noted)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
	Static		·						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$) V, I _D = 2	250 µA	500	-	-	V
Gate-Source Leakage IGSS $V_{GS} = \pm 20$ V - + 100 n/A Zero Gate Voltage Drain Current IDSS $V_{DS} = 500$ V, $V_{GS} = 0$ V - - 250 µ/A Drain-Source On-State Resistance RDS(on) $V_{GS} = 10$ V Ip = 5.3 A ^b - - 0.85 Ω Forward Transconductance gts $V_{DS} = 500$ V, $V_{GS} = 0$ V, $U_{D} = 5.3$ A ^b - - 0.85 Ω Dupanic nput Capacitance C_{GSS} $V_{DS} = 500$ V, $V_{DS} = 500$ V, $U_{D} = 5.3$ A ^b - -	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	to 25 °C,	I _D = 1 mA	-	0.78	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V$	/ _{GS} , I _D = 2	250 µA	2.0	-	4.0	V
Zero Gate Voltage Drain Current Ibss VDS = 400 V, V0S = 0 V, TJ = 125 °C - - 250 μ^{μ} Drain-Source On-State Resistance RDS(ort) VGS = 10 V Ib = 5.3 Åb - - 0.85 Ω Forward Transconductance gfs VDS = 50 V, Ib = 5.3 Åb 5.3 - - S Dynamic VDS = 50 V, Ib = 5.3 Åb 5.3 - - S Dutput Capacitance Ciss VDS = 25 V, Ib = 5.3 Åb - 1300 - Output Capacitance Ciss VDS = 25 V, Ib = 5.3 Åb - 120 - Total Gate Charge Qg VDS = 10 V Ib = 8.0 A, VDS = 400 V - - 63 Gate-Drain Charge Qgd VDS = 10 V Ib = 8.0 A, VDS = 400 V - - 11 nd Gate-Drain Charge Qgd VDS = 250 V, Ib = 8.0 A, Ib = 8.0 A, Ib = 8.0 A, Ib = 7.2 3.0 - 14 - - 23 - - 14 - - 23 - - 14 -	Gate-Source Leakage	I _{GSS}	Ve	_{as} = ± 20	V	-	-	± 100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zara Cata Valtaga Drain Currant	1	V _{DS} = 5	600 V, V _G	_S = 0 V	-	-	25	
Forward Transconductance g_{fs} $V_{DS} = 50 \text{ V}, I_D = 5.3 \text{ A}^b$ 5.3 - - S Dynamic Input Capacitance C_{685} $V_{DS} = 50 \text{ V}, I_D = 5.3 \text{ A}^b$ 5.3 - - S Output Capacitance C_{085} $V_{DS} = 25 \text{ V},$ - 310 - pf Reverse Transfer Capacitance C_{rss} $f = 1.0 \text{ MHz}$, see fig. 5 - 120 - Total Gate Charge Q_{gg} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ - - 633 Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ - - 11 nt Gate-Drain Charge Q_{gd} $V_{DD} = 250 \text{ V}, I_D = 8.0 \text{ A},$ - 23 - - 14 - - 230 - - 14 - - 230 - - 14 - - 230 - - 14 - - 200 - - 130 \text{ -} <td>Zero Gate voltage Drain Current</td> <td>IDSS</td> <td>V_{DS} = 400 V, V</td> <td>V_{GS} = 0 V</td> <td>′, T_J = 125 °C</td> <td>-</td> <td>-</td> <td>250</td> <td>μΑ</td>	Zero Gate voltage Drain Current	IDSS	V _{DS} = 400 V, V	V _{GS} = 0 V	′, T _J = 125 °C	-	-	250	μΑ
DynamicInput Capacitance C_{iss} $V_{GS} = 0$ V, $V_{DS} = 25$ V, f = 1.0 MHz, see fig. 5-1300-Output Capacitance C_{css} $V_{DS} = 25$ V, f = 1.0 MHz, see fig. 5-1300-Total Gate Charge Q_g Gate-Drain Charge Q_{gd} Gate-Drain Charge Q_{gd} Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_r Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S Pulsed Diode Forward Currenta I_S Body Diode Reverse Recovery Time t_r $T_u = 25$ °C, $I_F = 8.0$ A, $dI/dt = 100$ A/µsb $T_u = 25$ °C, $I_F = 8.0$ A, $dI/dt = 100$ A/µsb	Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}$ $I_D = 5.3 \text{ A}^{b}$		-	-	0.85	Ω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance	9 _{fs}	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 5.3 \text{ A}^{b}$		5.3	-	-	S	
Output Capacitance C_{oss} $V_{DS} = 25 \text{ V}$, f = 1.0 MHz, see fig. 5 - 310 - pf Reverse Transfer Capacitance C_{rss} f = 1.0 MHz, see fig. 5 - 120 - 63 - 120 - 63 Gate-Source Charge Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ see fig. 6 and 13 ^b - - 63 - - 63 - - 63 - - 63 - - 63 - - - 63 - - - 63 - - - 10 - - 30 - - - 11 no - - 30 - - 14 - - - 14 - - 20 - - 14 - - 20 - - 14 - - 20 - - 14 - - 5.0 - - 13	Dynamic		•						
Reverse Transfer Capacitance C_{rss} $f = 1.0 \text{ MHz}$, see fig. 5- 120 -Total Gate Charge Q_g Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ 63Gate-Source Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ 63Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ 63Turn-On Delay Time $t_{d(on)}$ $R_{gg} = 9.1 \Omega, R_D = 31 \Omega$, see fig. 10 ^b 14-Turn-Off Delay Time $t_{d(off)}$ $R_g = 9.1 \Omega, R_D = 31 \Omega$, see fig. 10 ^b -20-Fall Time t_f Between lead, 6 mm (0.25") from package and center of die contact-5.0Internal Source Inductance L_S MOSFET symbol showing the integral reverse ρ - n junction diode35APulsed Diode Forward Current ^a I_{SM} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A}/\mu \text{s}^b$ 2.0VBody Diode Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A}/\mu \text{s}^b$ 2.0VBody Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A}/\mu \text{s}^b$ 2.0V-3.57.6 μ 0.00.00.00.0 <td>Input Capacitance</td> <td>C_{iss}</td> <td>۱. ۱</td> <td>/_{GS} = 0 V</td> <td>,</td> <td>-</td> <td>1300</td> <td>-</td> <td></td>	Input Capacitance	C _{iss}	۱. ۱	/ _{GS} = 0 V	,	-	1300	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V	_{DS} = 25 V	Ι,	-	310	-	pF
Gate-Source Charge Q_{gg} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ see fig. 6 and 13b $ 11$ nC Gate-Drain Charge Q_{gd} Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V}$ see fig. 6 and 13b $ 114$ $ 30$ Turn-On Delay Time $t_{d(off)}$ T_r $V_{DD} = 250 \text{ V}, I_D = 8.0 \text{ A},$ $R_g = 9.1 \Omega, R_D = 31 \Omega, see fig. 10b 23 14-Turn-Off Delay Timet_{d(off)}R_g = 9.1 \Omega, R_D = 31 \Omega, see fig. 10b 20 49-Fall Timet_fR_g = 9.1 \Omega, R_D = 31 \Omega, see fig. 10^b 5.0 13-Internal Drain InductanceL_DBetween lead,6 \text{ mm} (0.25") frompackage and center ofdie contact 13 13-Drain-Source Body Diode CharacteristicsMOSFET symbolshowing theintegral reversep - n junction diode 8.8 8.8-Body Diode VoltageV_{SD}T_J = 25 ^{\circ}C, I_S = 8.8 A, V_{GS} = 0 V^b 2.0VBody Diode Reverse Recovery ChargeQ_{rr}T_J = 25 ^{\circ}C, I_F = 8.0 A, dI/dt = 100 A/\mu s^b 460970nsR_{S} = 0 V_D Diode Reverse Recovery ChargeQ_{rr}T_J = 25 ^{\circ}C, I_F = 8.0 A, dI/dt = 100 A/\mu s^b 2.0V$	Reverse Transfer Capacitance	C _{rss}	f = 1.0	MHz, see	e fig. 5	-	120	-	
Gate-Source Charge Q_{gs} $V_{GS} = 10$ Vsee fig. 6 and 13b11nCGate-Drain Charge Q_{gd} 11nCGate-Drain Charge Q_{gd} 30Turn-On Delay Time $t_{d(on)}$ $V_{DD} = 250$ V, $I_D = 8.0$ A,-14-Rise Time t_r $V_{DD} = 250$ V, $I_D = 8.0$ A,-23-Turn-Off Delay Time $t_{d(off)}$ $R_g = 9.1$ Ω , $R_D = 31$ Ω , see fig. 10b-20-Fall Time t_r L_D Between lead, 6 mm (0.25°) from package and center of die contact-5.0Internal Source Inductance L_S MOSFET symbol showing the integral reverse $p - n$ junction diode8.8APulsed Diode Forward Current* I_S MOSFET symbol showing the integral reverse $p - n$ junction diode3.5ABody Diode Voltage V_{SD} $T_J = 25$ °C, $I_S = 8.8$ A, $V_{GS} = 0$ Vb2.0VBody Diode Reverse Recovery Time t_{rr} $T_J = 25$ °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb2.0VGate Diode Reverse Recovery Charge Q_{rr} $T_J = 25$ °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb3.57.6µC	Total Gate Charge	Qg				-	-	63	
Gate-Drain Charge Q_{gd} 30Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_q Fall Time t_f Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-Internal Source Inductance L_S Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIs Is MMSFET symbol showing the integral reverse $p - n$ junction diodePulsed Diode Forward CurrentaIs M_S Body Diode Voltage V_{SD} T_J = 25 °C, I_S = 8.8 A, V_{GS} = 0 V^b-T_J = 25 °C, I_F = 8.0 A, dI/dt = 100 A/µs^b-36.8 <td>Gate-Source Charge</td> <td>Q_{gs}</td> <td>V_{GS} = 10 V</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>11</td> <td>nC</td>	Gate-Source Charge	Q _{gs}	V _{GS} = 10 V			-	-	11	nC
Rise Time t_r $V_{DD} = 250 \text{ V}, \text{ I}_D = 8.0 \text{ A},$ $ 23$ $ 23$ $ 49$ $ 49$ $ 49$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ -$ <	Gate-Drain Charge	Q _{gd}	-	see	lig. 6 and 135	-	-	30	1
Rise Time t_r $V_{DD} = 250 \text{ V}, \text{ I}_D = 8.0 \text{ A},$ $ 23$ $ 23$ $ 49$ $ 49$ $ 49$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ 20$ $ -$ <	Turn-On Delay Time	t _{d(on)}		L		-	14	-	
Turn-Off Delay Time $t_{d(off)}$ $R_g = 9.1 \Omega, R_D = 31 \Omega, see fig. 10^b$ $ 49$ $-$ Fall Time t_f Internal Drain Inductance L_D Internal Source Inductance L_S Between lead, 6 mm (0.25") from package and center of die contact $ 5.0$ $-$ Internal Source Inductance L_S Between lead, 6 mm (0.25") from package and center of die contact $ 13$ $-$ Drain-Source Body Diode Characteristics $ 13$ $ 13$ $-$ Continuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode $ 8.8$ A Pulsed Diode Forward Currenta I_{SM} $T_J = 25$ °C, $I_S = 8.8$ A, $V_{GS} = 0$ Vb $ 2.0$ VBody Diode Reverse Recovery Time t_{rr} $T_J = 25$ °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb $ 460$ 970 ns Body Diode Reverse Recovery Charge Q_{rr} $T_r = 25$ °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb $ 460$ 970 ns	Rise Time		V _{DD} = 2	50 V. In =	= 8.0 A.	-	23	-	
Fall Time t_f -20-Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-5.0Internal Source Inductance L_S L_S MOSFET symbol showing the integral reverse $p - n$ junction diode-13Pulsed Diode Forward Currenta I_SM MOSFET symbol showing the integral reverse $p - n$ junction diode8.8ABody Diode Reverse Recovery Time V_{SD} $T_J = 25$ °C, $I_S = 8.8$ A, $V_{GS} = 0$ Vb2.0VT_J = 25 °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb-460970nsGody Diode Reverse Recovery Charge Q_{rr} T_J = 25 °C, $I_F = 8.0$ A, dl/dt = 100 A/µsb-460970ns	Turn-Off Delay Time	t _{d(off)}		. 5		-	49	-	ns
Internal Drain InductanceLD6 mm (0.25") from package and center of die contact-5.0nHInternal Source InductanceLs6 mm (0.25") from package and center of die contact-13-nHDrain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode8.8APulsed Diode Forward CurrentaIsMOSFET symbol showing the integral reverse p - n junction diode8.8ABody Diode VoltageVsDTJ = 25 °C, Is = 8.8 A, VGS = 0 Vb2.0VBody Diode Reverse Recovery TimetrrTJ = 25 °C, IF = 8.0 A, dI/dt = 100 A/µsb-460970nsBody Diode Reverse Recovery ChargeQrrTJ = 25 °C, IF = 8.0 A, dI/dt = 100 A/µsb-460970ns-3.57.6µC1.5-1.5	Fall Time			0 - 01 32	, see lig. 10	-	20	-	
Internal Source InductanceLspackage and center of die contactImage: second secon	Internal Drain Inductance	L _D		m		-	5.0	-	
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode8.8Pulsed Diode Forward CurrentaIsMIsMTJ = 25 °C, Is = 8.8 A, VGS = 0 Vb35Body Diode VoltageVsDTJ = 25 °C, Is = 8.8 A, VGS = 0 Vb2.0VBody Diode Reverse Recovery TimetrrTJ = 25 °C, IF = 8.0 A, dI/dt = 100 A/µsb-460970nsBody Diode Reverse Recovery ChargeQrrTJ = 25 °C, IF = 8.0 A, dI/dt = 100 A/µsb-3.57.6µC	Internal Source Inductance	Ls		nter of		-	13	-	nH
Continuous Source-Drain Diode CurrentIs Is showing the integral reverse p - n junction diodeshowing the integral reverse p - n junction diode8.8 8.8 -APulsed Diode Forward CurrentaIs Is NIs Is P - n junction diode35ABody Diode VoltageVspTJ = 25 °C, Is = 8.8 A, Vgs = 0 Vb2.0VBody Diode Reverse Recovery Timetrr TJ = 25 °C, Is = 8.0 A, dI/dt = 100 A/µsb-460970nsBody Diode Reverse Recovery ChargeQrrTJ = 25 °C, Is = 8.0 A, dI/dt = 100 A/µsb-3.57.6µC	Drain-Source Body Diode Characteristic	cs							•
Pulsed Diode Forward Currenta I_{SM} Integral reverse \bullet \bullet $ 35$ Body Diode Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 8.8 \text{ A}, V_{GS} = 0 \text{ Vb}$ $ 2.0 \text{ V}$ Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A/µsb}$ $ 460$ 970 ns Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A/µsb}$ $ 3.5$ 7.6 µC	Continuous Source-Drain Diode Current	I _S	showing the	I		-	-	8.8	
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 8.0 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s^b$ -460970nsBody Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 8.0 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s^b$ -3.57.6 μC	Pulsed Diode Forward Current ^a	I _{SM}		ode		-	-	35	A
Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \text{ °C}, I_F = 8.0 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}^b$ - 3.5 7.6 μC	Body Diode Voltage	V _{SD}	T _J = 25 °C, I	_S = 8.8 A	, $V_{GS} = 0 V^{b}$	-	-	2.0	V
Body Diode Reverse Recovery Charge Q _{rr} - 3.5 7.6 μC	Body Diode Reverse Recovery Time	t _{rr}	T 25 °C I	מטע אי	/dt - 100 A/uch	-	460	970	ns
Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)	Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 23$ U, $I_{\rm F} =$	0.0 A, dl	$a_1 = 100 A \mu S^{0}$	-	3.5	7.6	μC
	Forward Turn-On Time	t _{on}	Intrinsic turn	on time	is negligible (turn	-on is dor	minated b	y L _S and	L _D)

Notes


a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

www.vishay.com 2

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

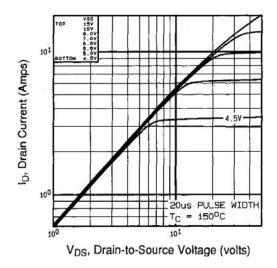
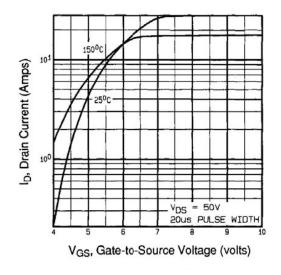



Fig. 2 - Typical Output Characteristics, T_C = 150 $^\circ C$

THE PRODUCT DESCRIBED HEREIN AND THIS DATASH Downloaded From Oneyac.com

This detection of the observer without active.

Fig. 3 - Typical Transfer Characteristics

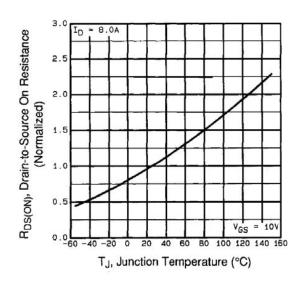


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

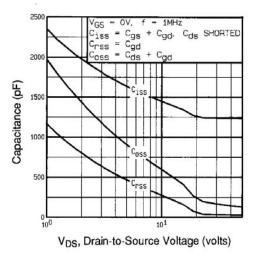


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

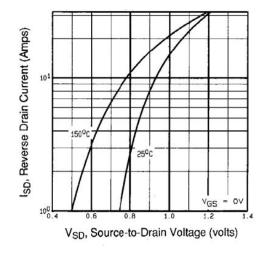


Fig. 7 - Typical Source-Drain Diode Forward Voltage

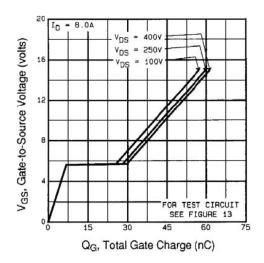


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

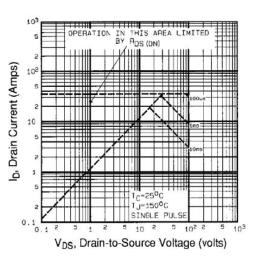


Fig. 8 - Maximum Safe Operating Area

This datasheet is subject to shares without patice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEE Downloaded From Oneyac.com // MERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

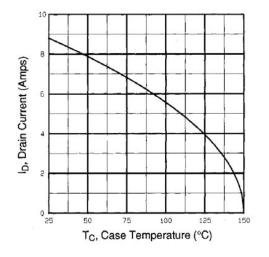


Fig. 9 - Maximum Drain Current vs. Case Temperature

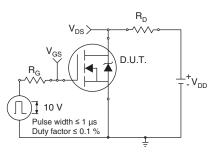


Fig. 10a - Switching Time Test Circuit

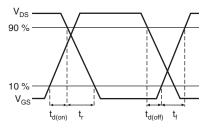


Fig. 10b - Switching Time Waveforms

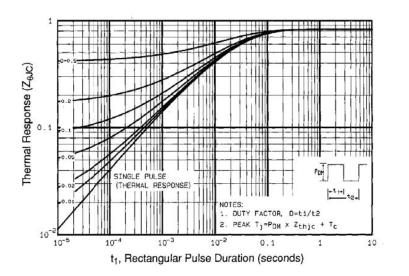


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

This detection of the observer without active.

THE PRODUCT DESCRIBED HEREIN AND THIS DATASH Downloaded From Oneyac.com

Vishay Siliconix

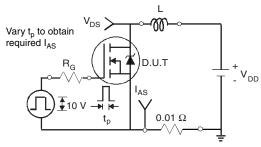


Fig. 12a - Unclamped Inductive Test Circuit

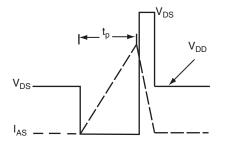


Fig. 12b - Unclamped Inductive Waveforms

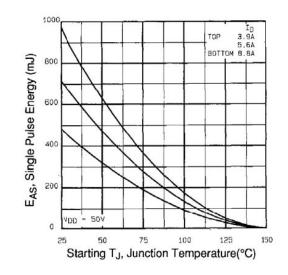


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

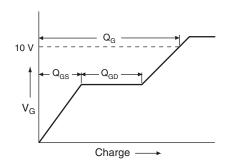
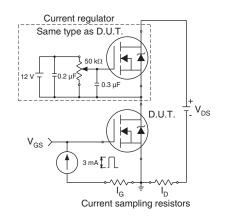
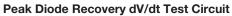
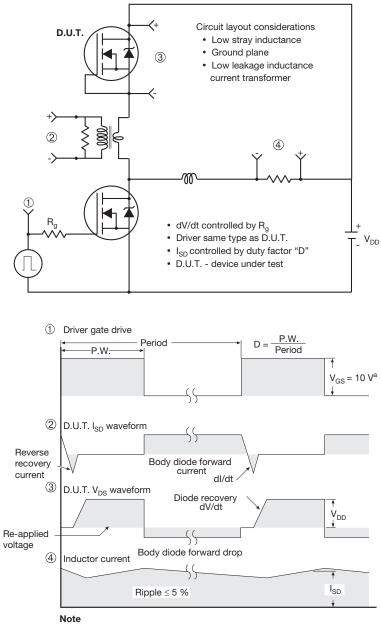



Fig. 13a - Basic Gate Charge Waveform

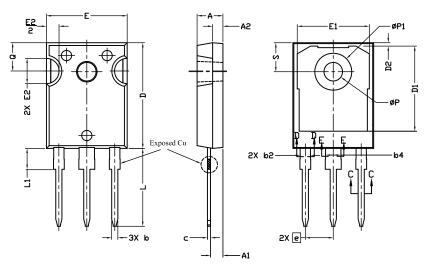




Document Number: 91228 S11-0444-Rev. B, 14-Mar-11

a. $V_{GS} = 5 V$ for logic level devices

Fig.14 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91228.

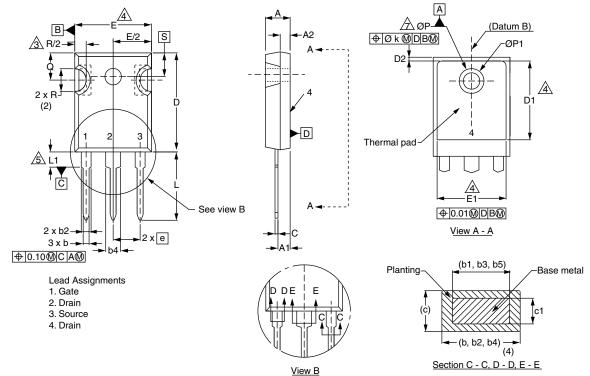
Document Number: 91228 S11-0444-Rev. B, 14-Mar-11

TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

Section C--C, D--D, E--E

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
А	4.83	5.21	
A1	2.29	2.55	
A2	1.50	2.49	
b	1.12	1.33	
b1	1.12	1.28	
b2	1.91	2.39	6
b3	1.91	2.34	
b4	2.87	3.22	6, 8
b5	2.87	3.18	
С	0.55	0.69	6
c1	0.55	0.65	
D	20.40	20.70	4


	MILLIN	MILLIMETERS			
DIM.	MIN.	MAX.	NOTES		
D1	16.25	16.85	5		
D2	0.56	0.76			
E	15.50	15.87	4		
E1	13.46	14.16	5		
E2	4.52	5.49	3		
е	5.44				
L	14.90	15.40			
L1	3.96	4.16	6		
ØP	3.56	3.65	7		
Ø P1	7.19				
Q	5.31	5.69			
S	5.54	5.74			

Notes

- ⁽¹⁾ Package reference: JEDEC TO247, variation AC
- (2) All dimensions are in mm
- ⁽³⁾ Slot required, notch may be rounded
- (4) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁵⁾ Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

VERSION 2: FACILITY CODE = Y

MILLIMETERS		MILLIMETERS		MILLIMETERS			
DIM.	MIN.	MAX.	NOTES	DIM.	MIN.	MAX.	NOTE
А	4.58	5.31		D2	0.51	1.30	
A1	2.21	2.59		E	15.29	15.87	
A2	1.17	2.49		E1	13.72	-	
b	0.99	1.40		е	5.46	BSC	
b1	0.99	1.35		Øk	0.	254	
b2	1.53	2.39		L	14.20	16.25	
b3	1.65	2.37		L1	3.71	4.29	
b4	2.42	3.43		ØP	3.51	3.66	
b5	2.59	3.38		Ø P1	-	7.39	
С	0.38	0.86		Q	5.31	5.69	
c1	0.38	0.76		R	4.52	5.49	
D	19.71	20.82		S	5.51	BSC	
D1	13.08	-					

Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c
- ⁽⁸⁾ Xian and Mingxin actually photo

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)