

Quad Complementary CMOS Analog Switch

DESCRIPTION

The versatile DG213 analog switch has two NC and two NO switches. It can be used in various configurations, including four single-pole single-throw (SPST), two single-pole double-throw (SPDT), one "T" switch, one DPDT, etc. This device is fabricated in a Vishay Siliconix' proprietary high-voltage silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

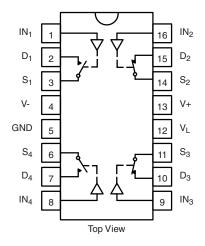
This analog switch was designed for a wide variety of general purpose applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. These switches can handle up to ± 22 V, and have an improved continuous current rating of 30 mA. An epitaxial layer prevents latchup.

All switches feature true bi-directional performance in the on condition, and will block signals to the supply levels in the off condition.

For additional information, please refer to Application Note AN208 (FaxBack document #70606).

FEATURES

- ± 22 V supply voltage rating
- · TTL and CMOS compatible logic
- Low on-resistance $r_{DS(on)}$: 45 Ω
- Low leakage I_{D(on)}: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching t_{ON}: 85 ns


BENEFITS

- Low charge injection Q: 1 pC
- Wide analog signal range
- Simple logic interface
- Higher accuracy
- · Minimum transients
- Reduced power consumption
- Low cost

APPLICATIONS

- Industrial instrumentation
- · Test equipment
- Communications systems
- · Computer peripherals
- · Portable instruments
- Sample-and-hold circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
Logic	SW ₁ , SW ₄	SW ₂ , SW ₃			
0	OFF	ON			
1	ON	OFF			

Logic "0" \leq 0.8 V Logic "1" \geq 2.4 V

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply.

ORDERING INFORMATION					
Temp. Range	Package	Standard Part Number	Lead (Pb)-free Part Number		
	16-Pin Plastic DIP	DG213DJ	DG213DJ-E3		
- 40 °C to 85 °C	16-Pin Narrow SOIC	DG213DY DG213DY-T1	DG213DY-E3 DG213DY-T1-E3		
	16-Pin TSSOP	DG213DQ DG213DQ-T1	DG213DQ-E3 DG213DQ-T1-E3		

Parameter		Limit	Unit		
Voltages Referenced V+ to V	1_	44			
GND		25	-		
Digital Inputs ^a V _S , V _D		(V-) - 2 to $(V+)$ + 2 or 30 mA, whichever occurs first	V		
Current, Any Terminal		30	A		
Peak Current (Pulsed at 1 ms, 10 % duty cycle max.)		100	- mA		
Storage Temperature		- 65 to 125	°C		
	16-Pin Plastic DIP ^c	470			
Power Dissipation ^b	16-Pin Narrow SOIC ^d	640	mW		
	16-Pin TSSOP ^d	500			

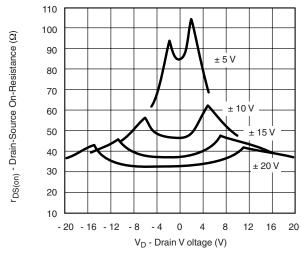
Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6.5 mW/°C above 75 °C.
- d. Derate 7.6 mW/°C above 75 °C.

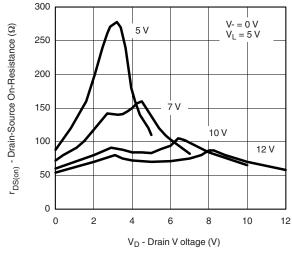
DG213 Vishay Siliconix

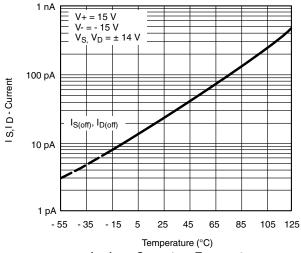
		Test Conditions Unless Otherwise Specified		- 40	D Suffix 0 °C to 85		
		$V+ = 15 V$, $V- = -15 V$, $V_L = 5 V$,					
Parameter	Symbol	$V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{e}$	Temp.a	Min.c	Typ.b	Max. ^c	Uni
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	V-		V+	V
Drain-Source On-Resistance	r _{DS(on)}	$V_D = \pm 10 \text{ V}, I_S = 1 \text{ mA}$	Room Full		45	60 85	Ω
r _{DS(on)} Match	$\Delta r_{DS(on)}$		Room		1	2	
Source Off Leakage Current	I _{S(off)}	$V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V}$	Room Full	- 0.5 - 5	± 0.01	0.5 5	
Drain Off Leakage Current	I _{D(off)}	$V_D = \pm 14 \text{ V}, V_S = \pm 14 \text{ V}$	Room Full	- 0.5 - 5	± 0.01	0.5 5	nA
Drain On Leakage Current ^f	I _{D(on)}	V _S = V _D = 14 V	Room Full	- 0.5 - 10	± 0.02	0.5 10	
Digital Control							
Input Voltage High	V _{INH}		Full	2.4			V
Input Voltage Low	V _{INL}		Full			0.8	V
Input Current	I _{INL} or I _{INH}	V _{INH} or V _{INL}	Full	- 1		1	μA
Input Capacitance	C _{IN}		Room		5		рF
Dynamic Characteristics							
Turn-On Time	t _{ON}	V _S = 10 V	Room		85	130	
Turn-Off Time	t _{OFF}	See Figure 2	Room		55	100	ns
Break-Before-Make Time Delay	t _D	V _S = 10 V, See Figure 3	Room	15	25		
Charge Injection	Q	$C_L = 1000 \text{ pF}, V_g = 0 \text{ V}, R_g = 0 \Omega$	Room		1		рC
Source-Off Capacitance	C _{S(off)}	V _S = 0 V, f = 1 MHz	Room		5		
Drain-Off Capacitance	C _{D(off)}	· ·	Room		5		рF
Channel On Capacitance	C _{D(on)}	$V_D = V_S = 0 V, f = 1 MHz$	Room		16		
Off-Isolation	OIRR	C_L = 15 pF, R_L = 50 Ω	Room		90		dE
Channel-to-Channel Crosstalk	X _{TALK}	$V_S = 1 V_{RMS}$, $f = 100 kHz$	Room		95		uL
Power Supply							
Positive Supply Current	l+	V _{IN} = 0 or 5 V	Room Full			1 5	
Negative Supply Current	I-	- III	Room Full	- 1 - 5			μA
Logic Supply Current	IL		Room Full			1 5	
Power Supply Range for Continuous Operation	V _{OP}		Full	± 3		± 22	٧

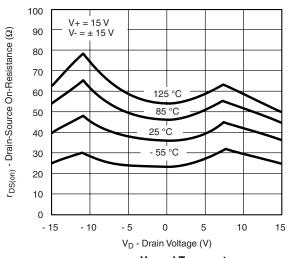
SPECIFICATIONS for Unipolar Supply								
		Test Conditions Unless Otherwise Specified		- 40	D Suffix			
Parameter	Symbol	$V+ = 12 V, V- = 0 V, V_L = 5 V,$ $V_{IN} = 2.4 V, 0.8 V^e$	Temp.a	Min.c	Typ.b	Max.c	Unit	
Analog Switch								
Analog Signal Range ^d	V _{ANALOG}		Full	V-		V+	V	
Drain-Source On-Resistance	r _{DS(on)}	V _D = 3 V, I _S = 1 mA	Room Full		90	110 140	Ω	
Dynamic Characteristics	Dynamic Characteristics							
Turn-On Time	t _{ON}	See Figure 2	Room		125	200		
Turn-Off Time	t _{OFF}	See Figure 2	Room		45	100	ns	
Break-Before-Make Time Delay	t _D	V _S = 8 V, See Figure 3	Room	50	80			
Charge Injection	Q	$C_L = 1 \text{ nF, } V_{gen} = 6 \text{ V, } R_{gen} = 0 \Omega$	Room		4		рC	
Power Supply			•		•		•	
Positive Supply Current	l+	V _{IN} = 0 or 5 V	Room Full			1 5		
Negative Supply Current	I-	V _{IN} = 0 01 0 V	Room Full	- 1 - 5			μА	
Logic Supply Current	IL		Room Full			1 5		
Power Supply Range for Continuous Operation	V _{OP}		Full	+ 3		+ 40	V	

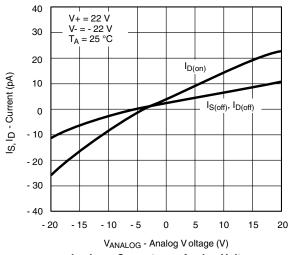

Notes:

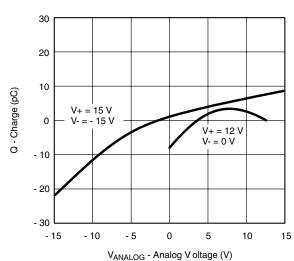
- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

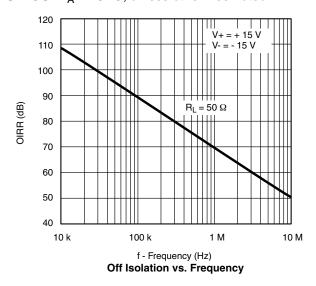

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted


r_{DS(on)} vs. V_D and Power Supply Voltages


 $r_{DS(on)}\, vs. \, V_D$ and Single Power Supply Voltages


Leakage Current vs. Temperature

r_{DS(on)} vs. V_D and Temperature


Leakage Currents vs. Analog Voltage

 $\mathbf{Q_S}$, $\mathbf{Q_D}$ - Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

SCHEMATIC DIAGRAM Typical Channel

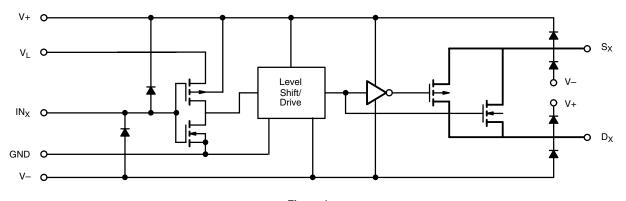


Figure 1.

TEST CIRCUITS

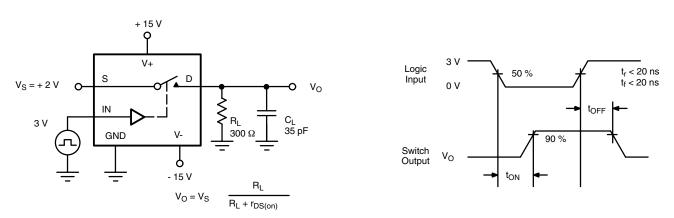
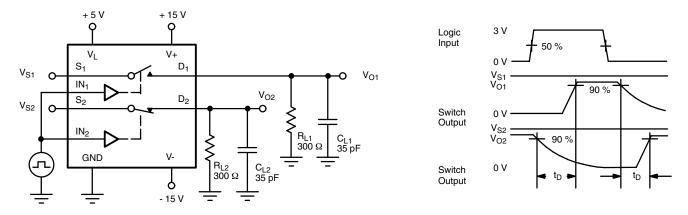



Figure 2. Switching Time

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

Figure 3. Break-Before-Make

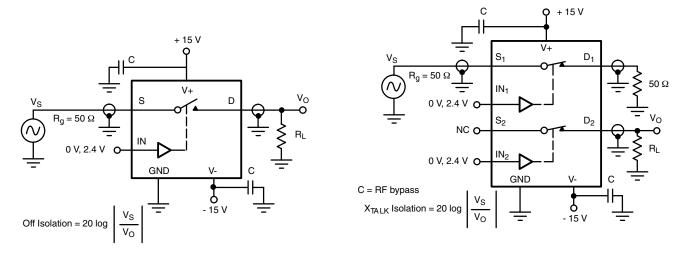
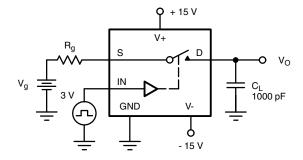
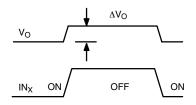




Figure 4. Off Isolation

Figure 5. Channel-to-Channel Crosstalk

 ΔV_O = measured voltage error due to charge injection The charge injection in coulombs is Q = C_L x ΔV_O

Figure 6. Charge Injection

VISHAY.

APPLICATIONS

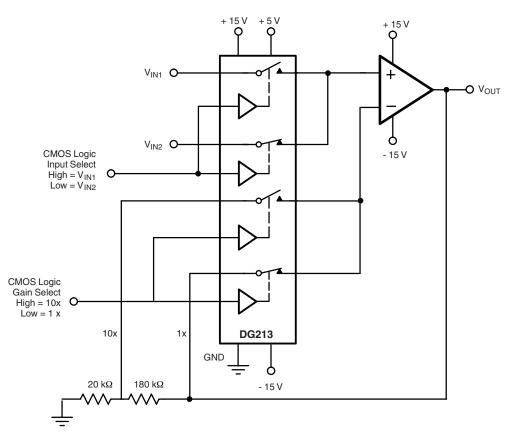
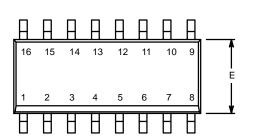
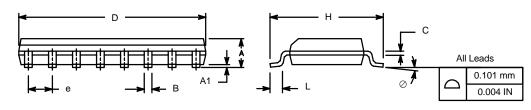



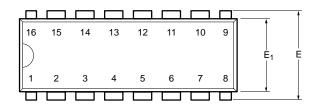
Figure 7. Low Power Non-Inverting Amplifier with Digitally Selectable Inputs and Gain

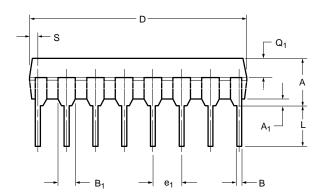
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70662.

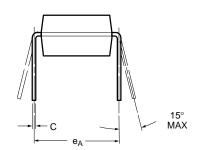

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.38	0.51	0.015	0.020	
С	0.18	0.23	0.007	0.009	
D	9.80	10.00	0.385	0.393	
E	3.80	4.00	0.149	0.157	
е	1.27	BSC	0.050	BSC	
Н	5.80	6.20	0.228	0.244	
L	0.50	0.93	0.020	0.037	
0	0°	8°	0°	8°	
ECN: S-03946—Rev E 09- Jul-01					

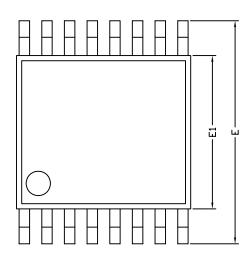
ECN: S-03946—Rev. F, 09-Jul-01

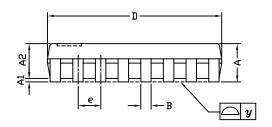

DWG: 5300

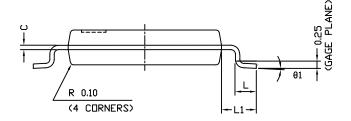



Document Number: 71194 www.vishay.com 02-Jul-01 sww.vishay.com

PDIP: 16-LEAD

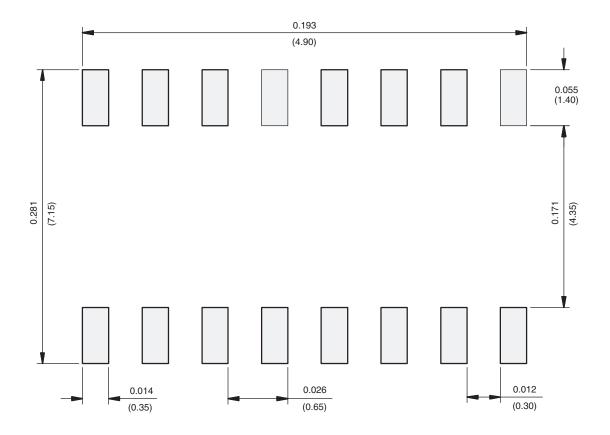



	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
Е	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q_1	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482					


Document Number: 71261 www.vishay.com 06-Jul-01 www.vishay.com

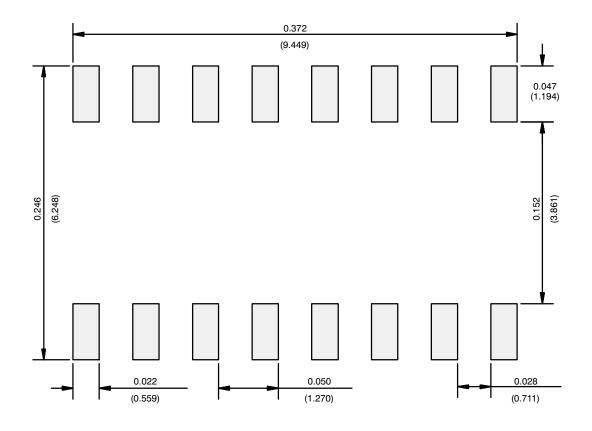
TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS				
Symbols	Min	Nom	Max		
Α	-	1.10	1.20		
A1	0.05	0.10	0.15		
A2	=	1.00	1.05		
В	0.22	0.28	0.38		
С	=	0.127	=		
D	4.90	5.00	5.10		
E	6.10	6.40	6.70		
E1	4.30	4.40	4.50		
е	-	0.65	-		
L	0.50	0.60	0.70		
L1	0.90	1.00	1.10		
у	=	-	0.10		
θ1	0°	3°	6°		
ECN: S-61920-Rev. D, 23-0	Oct-06				


ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417
23-Oct-06
www.vishay.com


RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)