

Vishay Semiconductors

GREEN

Infrared Emitting Diode, 875 nm, GaAlAs

DESCRIPTION

The TSHA620. series are infrared, 875 nm emitting diodes in GaAlAs technology, molded in a clear, untinted plastic package.

FEATURES

Package type: leadedPackage form: T-1¾

• Dimensions (in mm): Ø 5

• Peak wavelength: $\lambda_p = 875 \text{ nm}$

· High reliability

• Angle of half intensity: $\varphi = \pm 12^{\circ}$

Low forward voltage

· Suitable for high pulse current operation

· Good spectral matching with Si photodetectors

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

** Please see document "Vishay Material Category Policy": www.vishav.com/doc?99902

APPLICATIONS

- Infrared remote control and free air data transmission systems
- This emitter series is dedicated to systems with panes in transmission space between emitter and detector, because of the low absorbtion of 875 nm radiation in glass

PRODUCT SUMMARY						
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)		
TSHA6200	40	± 12	875	600		
TSHA6201	50	± 12	875	600		
TSHA6202	60	± 12	875	600		
TSHA6203	65	± 12	875	600		

Note

• Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
TSHA6200	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾		
TSHA6201	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾		
TSHA6202	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾		
TSHA6203	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾		

Note

· MOQ: minimum order quantity

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	SYMBOL VALUE		
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	2.5	Α	
Power dissipation		P _V	180	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	t ≤ 5 s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	230	K/W	

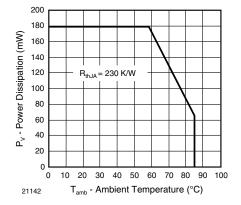


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN. TYP. MA		MAX.	. UNIT	
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.5	1.8	V	
Temperature coefficient of V _F	I _F = 100 mA	TK _{VF}		- 1.6		mV/K	
Reverse current	V _R = 5 V	I _R			100	μA	
Junction capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	C _j		20		pF	
Temperature coefficient of φ _e	I _F = 20 mA	TKφ _e		- 0.7		%/K	
Angle of half intensity		φ		± 12		deg	
Peak wavelength	I _F = 100 mA	λρ		875		nm	
Spectral bandwidth	I _F = 100 mA	Δλ		80		nm	
Temperature coefficient of λ_p	I _F = 100 mA	TKλ _p		0.2		nm/K	
Discussion of the second	I _F = 100 mA	t _r		600		ns	
Rise time	I _F = 1 A	t _r		300	300	ns	
Fall time	$I_F = 100 \text{ mA}$ t_f 6	600		ns			
raii tiirie	I _F = 1 A	t _f		300		ns	
Virtual source diameter		d		3.7		mm	

Vishay Semiconductors

TYPE DEDICATED CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TSHA6200	V _F		2.8	3.5	V
Forward voltage	L = 1 A + = 100 up	$_{\rm p}$ = 100 μs $\begin{array}{c} { m TSHA6200} & { m V_F} \\ { m TSHA6201} & { m V_F} \\ { m TSHA6202} & { m V_F} \\ { m TSHA6203} & { m V_F} \\ { m TSHA6203} & { m V_F} \\ { m TSHA6200} & { m I_e} & 25 \\ { m TSHA6201} & { m I_e} & 30 \\ { m TSHA6202} & { m I_e} & 36 \\ { m TSHA6203} & { m I_e} & 50 \\ { m TSHA6203} & { m I_e} & 200 \\ { m TSHA6200} & { m I_e} & 200 \\ { m TSHA6201} & { m I_e} & 260 \\ { m TSHA6201} & { m I_e} & 260 \\ { m TSHA6202} & { m I_e} & 330 \\ { m TSHA6202} & { m I_e} & 30 \\ { m TSHA6202} & { m I_e} & 30 \\ { m TSHA6202} & { m I_e} & 30 \\ { m TSHA620$		2.8	3.5	V	
Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	TSHA6202	V_{F}		2.8	3.5	V
		TSHA6203	V _F		2.8	3.5	V
		TSHA6200	l _e	25	40	125	mW/sr
	L = 100 mA + = 20 mg	TSHA6201	I _e	30	50	125	mW/sr mW/sr mW/sr
	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSHA6202	I _e	36	60	125	mW/sr
Radiant intensity		TSHA6203	6202	125	mW/sr		
nadiant intensity		TSHA6200	I _e	200	330	3.5 3.5 3.5 125 ml	mW/sr
	L = 1 A + = 100 up	TSHA6201	l _e	260	400		mW/sr
	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	TSHA6202	I _e	330	460		mW/sr
		TSHA6203	I _e	400	530		mW/sr
		TSHA6200	фe		22		mW
Dadient newer	100 4 + 00	TSHA6201	фe		23		mW
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	TSHA6202	фe		24		mW
		TSHA6203	фe		25		mW

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

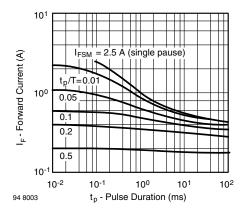


Fig. 3 - Pulse Forward Current vs. Pulse Duration

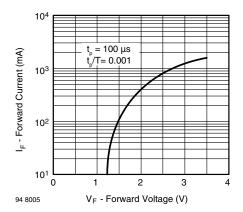


Fig. 4 - Forward Current vs. Forward Voltage

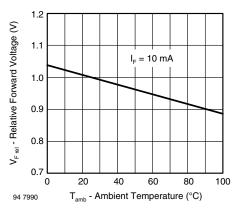


Fig. 5 - Relative Forward Voltage vs. Ambient Temperature

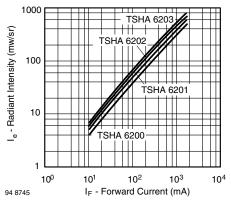


Fig. 6 - Radiant Intensity vs. Forward Current

Vishay Semiconductors

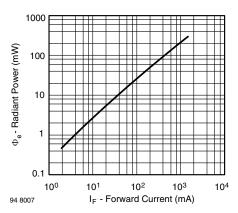


Fig. 7 - Radiant Power vs. Forward Current

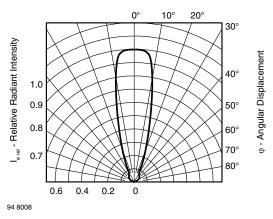


Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

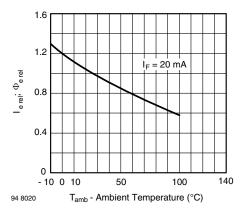
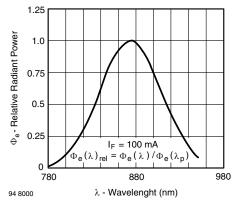
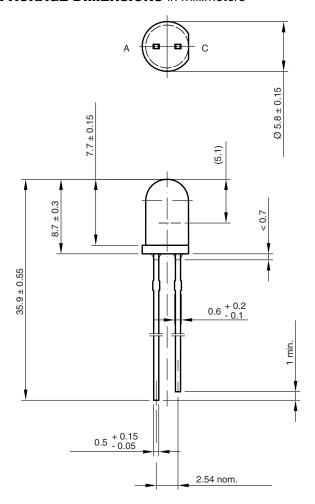
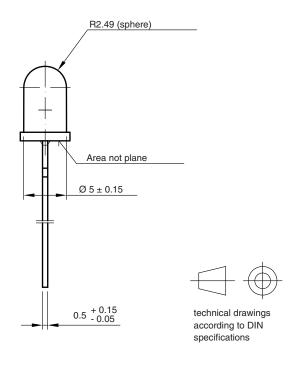


Fig. 8 - Relative Radiant Intensity/Power vs. Ambient Temperature


Fig. 9 - Relative Radiant Power vs. Wavelength

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

w.vishay.com/doc?91000

Drawing-No.: 6.544-5259.04-4

Issue: 8; 19.05.09

96 12125

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)