

Vishay Siliconix

Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V)	60	
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.018
Q _g (Max.) (nC)	110)
Q _{gs} (nC)	29	
Q _{gd} (nC)	36	
Configuration	Sing	le

N-Channel MOSFET

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Advanced Process Technology
- Dynamic dV/dt
- 175 °C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Drop in Replacement of the IRFZ48, SiHFZ48 for Linear/Audio Applications
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Advanced Power MOSFETs from Vishay utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²PAK is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2 W in a typical surface mount application.

ORDERING INFORMATION		
Package	D ² PAK (TO-263)	I ² PAK (TO-262)
Lead (Pb)-free and Halogen-free	SiHFZ48RS-GE3	-
Lead (Pb)-free	IRFZ48RSPbF	IRFZ48RLPbF
	SiHFZ48RS-E3	SiHFZ48RL-E3

ABSOLUTE MAXIMUM RATINGS (T _C :	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	60	v
Gate-Source Voltage			V _{GS}	± 20	v
Continuous Drain Current ^e	Vec at 10 V	T _C = 25 °C T _C = 100 °C		50	
Continuous Drain Ourrent	VGS AL TO V	T _C = 100 °C	۱ _D	50	А
Pulsed Drain Current ^{a, e}	•		I _{DM}	290	
Linear Derating Factor				1.3	W/°C
Single Pulse Avalanche Energy ^{b, e}			E _{AS}	100	mJ
Maximum Power Dissipation	T _C =	25 °C	PD	190	W
Peak Diode Recovery dV/dt ^{c, e}	•		dV/dt	4.5	V/ns
Operating Junction and Storage Temperature Range	9		T _J , T _{stg}	- 55 to + 175	°C
Soldering Recommendations (Peak Temperature) ^d	for	10 s		300 ^d	
Mounting Torque	6-32 or 1	VI3 screw		10	lbf · in
	0-32 01 1	NO SCIEW		1.1	N · m

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = 25 V, Starting T_J = 25 °C, L = 22 μ H, R_g = 25 Ω , I_{AS} = 72 A (see fig. 12). c. I_{SD} < 72 A, dl/dt < 200 A/ μ s, V_{DD} < V_{DS}, T_J < 175 °C. d. 1.6 mm from case.

e. Current limited by the package, (die current = 72 A).

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91296 S11-1054-Rev. C, 30-May-11

FREE

Vishay Siliconix

THERMAL RESISTANCE RATI	NGS							
PARAMETER	SYMBOL	TYP		MAX.			UNIT	
Maximum Junction-to-Ambient	R _{thJA}	-		62				
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50)	-			°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-		0.8				
		1	I					
SPECIFICATIONS (T _J = 25 °C, u	nless otherw	vise noted)						
PARAMETER	SYMBOL			NS	MIN.	TYP.	MAX.	UNIT
Static					•	I	I	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 25	0 μA	60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D	= 1 mA ^c	-	0.60	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 25	0 µA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 V$		-	-	± 100	nA
		V _{DS} :	= 60 V, V _{GS} =	0 V	-	-	25	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 48 V	V _{GS} = 0 V, T	j = 150 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D =	43 A ^b	-	-	0.018	Ω
Forward Transconductance	9 _{fs}	V _{DS} -	= 25 V, I _D = 4	3 A ^b	27	-	-	S
Dynamic					•			
Input Capacitance	C _{iss}		V 0.V		-	2400	-	
Output Capacitance	Coss		$V_{GS} = 0 V,$ $V_{DS} = 25 V,$		-	1300	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1.	0 MHz, see fi	g. 5 ^c	-	190	-	
Total Gate Charge	Qg				-	-	110	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V		V _{DS} = 48 V, 5 and 13 ^{b, c}	-	-	29	nC
Gate-Drain Charge	Q _{gd}		see lig. t	Janu 15-,-	-	-	36	
Turn-On Delay Time	t _{d(on)}		1		-	8.1	-	
Rise Time	t _r	Voo	= 30 V, I _D = 7	2 A.	-	250	-	
Turn-Off Delay Time	t _{d(off)}	$R_g = 9.1 \Omega, F$			-	210	-	ns
Fall Time	t _f				-	250	-	
Internal Drain Inductance	L _D	Between lead 6 mm (0.25") 1	,		-	4.5	-	
Internal Source Inductance	L _S	package and die contact	center of		-	7.5	-	nH
Drain-Source Body Diode Characteristic	cs							
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the			-	-	50 ^c	А
Pulsed Diode Forward Current ^a	I _{SM}	integral revers p - n junction		e to the second	-	-	290	
Body Diode Voltage	V_{SD}	T _J = 25 °C	C, I _S = 72 A, V	GS = 0 V ^b	-	-	2.0	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F :	- 72 A di/dt	- 100 A/ueb. c	-	120	180	ns
Body Diode Reverse Recovery Charge	Q _{rr}	1J = 20 0, IF	- <i>12</i> A, ui/ut	– 100 A/µa -	-	0.50	0.80	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on time is	negligible (turn	-on is dor	ninated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

c. Current limited by the package, (die current = 72 A).

www.vishay.com 2

Document Number: 91296 S11-1054-Rev. C, 30-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUME Downloaded From Oneyac.com MERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

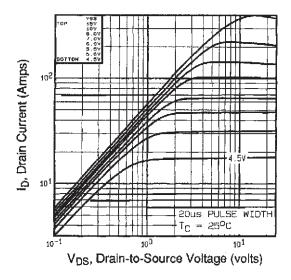


Fig. 1 - Typical Output Characteristics

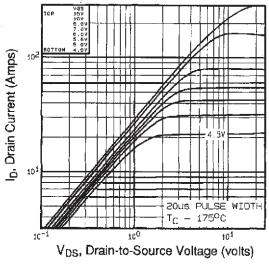


Fig. 2 - Typical Output Characteristics

This docume

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCU Downloaded From Oneyac.com

at is a chiest to change without notice.

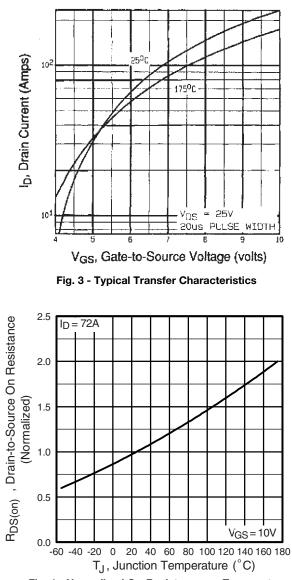


Fig. 4 - Normalized On-Resistance vs. Temperature

_AIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

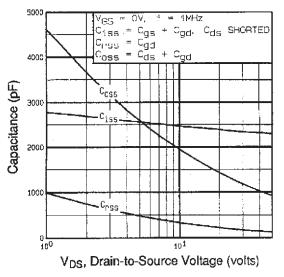


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

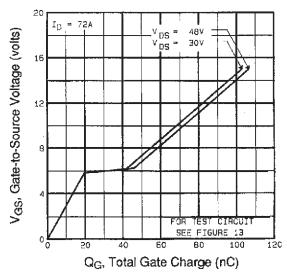


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

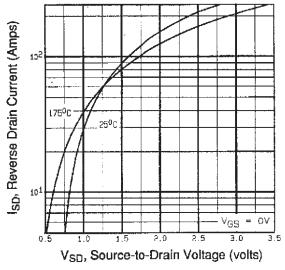


Fig. 7 - Typical Source-Drain Diode Forward Voltage

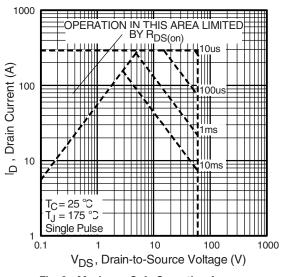


Fig. 8 - Maximum Safe Operating Area

www.vishay.com

Document Number: 91296 S11-1054-Rev. C, 30-May-11

This door most is subject to shares without paties.

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUME Downloaded From Oneyac.com MERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

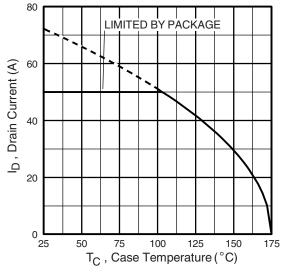


Fig. 9 - Maximum Drain Current vs. Case Temperature

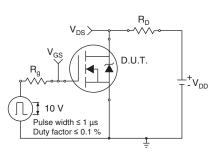


Fig. 10a - Switching Time Test Circuit

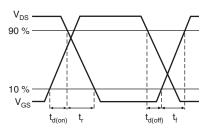


Fig. 10b - Switching Time Waveforms

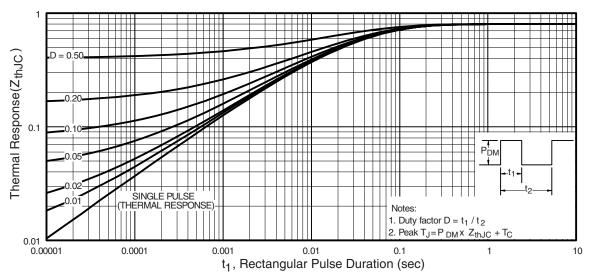


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

This decument is subject to change without notice.

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCU Downloaded From Oneyac.com

_AIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

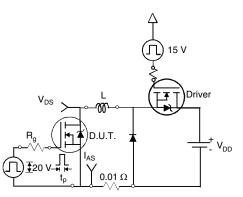


Fig. 12a - Unclamped Inductive Test Circuit

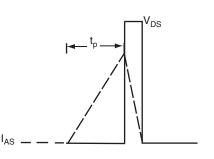


Fig. 12b - Unclamped Inductive Waveforms

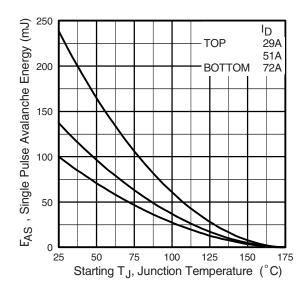


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

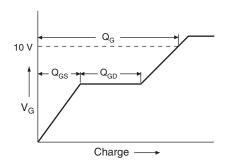


Fig. 13a - Maximum Avalanche Energy vs. Drain Current

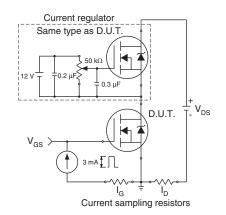
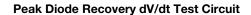
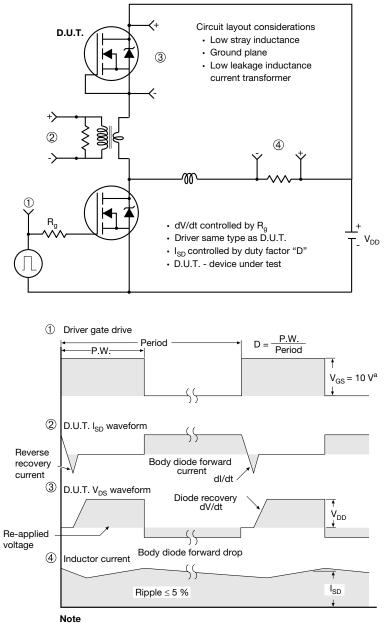


Fig. 13b - Gate Charge Test Circuit

www.vishay.com 6 Document Number: 91296 S11-1054-Rev. C, 30-May-11


This document is subject to choose without paties. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUME Downloaded From Oneyac.com MERS, SET FORTH


ac.com MERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

a. $V_{GS} = 5$ V for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?91296</u>.

Document Number: 91296 S11-1054-Rev. C, 30-May-11

_AIMERS, SET FORTH AT www.vishay.com/doc?91000

TO-263AB (HIGH VOLTAGE)

3 /4

2 x 🗗

A

н

Diating

Detail A

(Datum A)

D

<u>4</u> Lī

		Lead tip		lating b1, t (c) (c) (b, b <u>Section B -</u> Scale	2)	<u>.</u>			4	
	MILLI	METERS	INC	CHES			MILLIN	IETERS	INC	CHES
DIM.	MIN.	MAX.	MIN.	MAX.		DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190		D1	6.86	-	0.270	-
A1	0.00	0.25	0.000	0.010		E	9.65	10.67	0.380	0.420
b	0.51	0.99	0.020	0.039		E1	6.22	-	0.245	-
b1	0.51	0.89	0.020	0.035		е	2.54	BSC	0.100	BSC
b2	1.14	1.78	0.045	0.070		Н	14.61	15.88	0.575	0.625
b3	1.14	1.73	0.045	0.068		L	1.78	2.79	0.070	0.110
С	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066
c1	0.38	0.58	0.015	0.023		L2	-	1.78	-	0.070
c2	1.14	1.65	0.045	0.065		L3	0.25	BSC	0.010	BSC
D	8.38	9.65	0.330	0.380		L4	4.78	5.28	0.188	0.208
ECN: S-82 DWG: 597	2110-Rev. A, 70	15-Sep-08		•	•		•			

// ± 0.004 ₪ B

Base | / metal

Α

Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).
- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
- 4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.

Package Information

H

B

A1

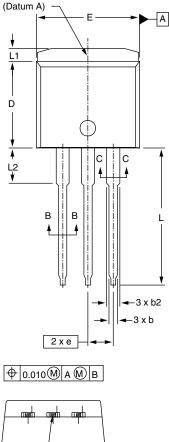
Gauge plane

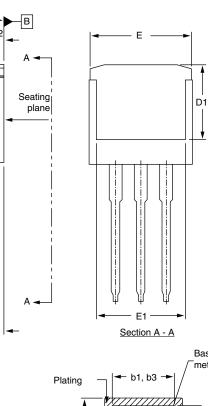
L3

Detail "A" Rotated 90° CW scale 8:1

0° tọ 8°

Vishay Siliconix


Seating plane



Vishay Siliconix

I²PAK (TO-262) (HIGH VOLTAGE)

Ψ	0.01	000	A ∭)	В
\square				
Γ		1		
1		1		

MILLIMETERS

MAX.

4.83

3.02

0.99

0.89

1.78

1.73

0.74

0.58

1.65

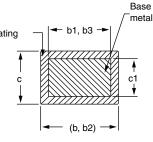
MIN.

4.06

2.03

0.51

0.51


1.14

1.14

0.38

0.38

1.14

Section B - B and C - C Scale: None

INC	HES
MIN.	MAX.
0.160	0.190
0.080	0.119
0.020	0.039
0.020	0.035
0.045	0.070
0.045	0.068
0.015	0.029
0.015	0.023
0.045	0.065

-▶||◄ С

> -A1

ECN: S-82442-Rev. A, 27-Oct-08 DWG: 5977

Notes

DIM.

А

A1

b

b1

b2

b3

с

c1

c2

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.
- 3. Thermal pad contour optional within dimension E, L1, D1, and E1.
- 4. Dimension b1 and c1 apply to base metal only.

INCHES

0.100 BSC

MAX.

0.380

-

0.420

_

0.555

0.065

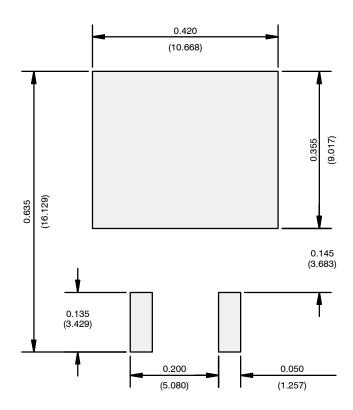
0.146

MIN.

0.330

0.270

0.380


0.245

0.530

0.140

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)