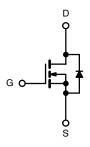

N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)			
30	0.0042 at V _{GS} = 10 V	28	29 nC			
30	0.0057 at V _{GS} = 4.5 V	24	28110			

FEATURES


- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET[®] Power MOSFETs
- 100 % R_g Tested

Ordering Information: Si4842BDY-T1-E3 (Lead (Pb)-free)

Si4842BDY-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V _{GS}	± 20	V
	T _C = 25 °C		28	
Continuous Drain Current (T _J = 150 °C)	T _C = 70 °C	1 1	23	
Continuous Diain Current (1) = 130 °C)	T _A = 25 °C	l l _D	20 ^{b, c}	
	T _A = 70 °C	1	16 ^{b, c}	Α
Pulsed Drain Current		I _{DM}	60	
Continuous Source-Drain Diode Current	T _C = 25 °C		5.6	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.7 ^{b, c}	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	35	
Avalanche Energy		E _{AS}	61	mJ
	T _C = 25 °C		6.25	
Maximum Dawar Dissination	T _C = 70 °C	P _D	4.0	W
Maximum Power Dissipation	T _A = 25 °C	1 'D	3.0 ^{b, c}	VV
	T _A = 70 °C	1	1.9 ^{b, c}	
Operating Junction and Storage Temperature	T _J , T _{stg}	- 55 to 150	°C	

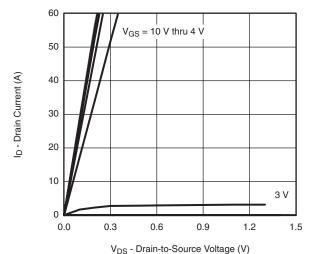
THERMAL RESISTANCE RATINGS							
Parameter	Symbol	Typical	Maximum	Unit			
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	32	42	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	15	20	O/ V V		

Notes:

- a. Based on T_C = 25 °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under Steady State conditions is 90 $^{\circ}\text{C/W}.$

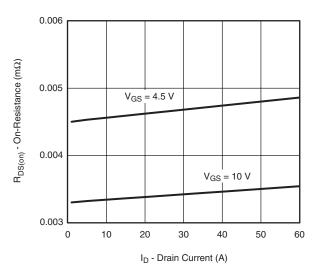
Vishay Siliconix

Drain-Source Breakdown Voltage V_DS V_GS = 0 V, I_D = 1 mA 30	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
V _{Ds} Temperature Coefficient Λ/V _{Ds} /T _J V _{Os(m)} Temperature Coefficient Λ/V _{Ds} /T _J V _{Os(m)} Temperature Coefficient Λ/V _{Ds} /T _J V _{Os(m)} Temperature Coefficient Λ/V _{Ds} /T _J V _{Ds} = 250 μA 30 mV/V Gate-Source Threshold Voltage V _{Os(m)} V _{Ds} = 0V, V _{Os} = 20 V ± 100 nA 30 y 100 nA 1.4 30 V x 100 nA 1.4 30 V x 100 nA 1.4 30 V x 100 nA x 100 n	Static						l.	
Vos(m) Temperature Coefficient ΔV _{GS(m)/TJ} (aste-Source Threshold Voltage V _{GS(m)} (by Gate-Source Leakage I do Source L	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = 1 mA	30			V	
Vosyiny Temperature Coefficient ΛV _{GS(M)} V _{GS(M)} V _{DS} = V _{GS} , I _D = 250 μA 1.4 3 V Gate-Source Threshold Voltage I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V ±100 nA Zero Gate Voltage Drain Current I _{GSS} V _{DS} = 30 V, V _{GS} = 0 V 1 μ On-State Drain Current ^a I _{D(on)} V _{DS} = 30 V, V _{GS} = 10 V 30 A On-State Resistance ^a P _{DS} = 10 V, I _D = 20 A 0.0034 0.0042 A Drain-Source On-State Resistance ^a P _{DS} = 15 V, V _{GS} = 15 V, I _D = 20 A 0.0047 0.0057 A Forward Transconductance ^a 9ts V _{DS} = 15 V, I _D = 20 A 90 S S Dynamic ^b V _{DS} = 15 V, I _D = 20 A 90 S S Dynamic ^b S Dy	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J 050A		30		mV/°C	
Gate-Source Leakage IGSS VDS = 0 V, VGS = ± 20 V ± 100 nA	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA		- 6.4			
Gate-Source Leakage I_GSS V_DS = 0 V, V_GS = ± 20 V ± 100 nA V_DS = 30 V, V_GS = 0 V T_J = 55 °C 10 10 V_DS = 30 V, V_GS = 0 V T_J = 55 °C 10 10 V_DS = 30 V, V_GS = 0 V T_J = 55 °C 10 10 V_DS = 5 V, V_GS = 10 V 30 0.0042 0.0057 V_DS = 5 V, V_GS = 10 V 30 0.0047 0.0057 V_DS = 5 V, V_DS = 15 V 0.0047 0.0057 0.0057 V_DS = 15 V, V_DS = 15 V 0.0047 0.0057 0.0057 V_DS = 15 V, V_DS = 15 V 0.0047 0.0057 0.0057 V_DS = 15 V, V_DS = 15 V 0.0047 0.0057 0.0057 V_DS = 15 V, V_DS = 15 V 0.0047 0.0057 0.0057 V_DS = 15 V, V_DS = 10 V 0.0057 0.0057 0.0057 V_DS = 15 V, V_DS = 10 V 0.0057 0.0057 0.0057 0.0057 V_DS = 15 V, V_DS = 10 V 0.0057 0.0057 0.0057 0.0057 V_DS = 15 V, V_DS = 10 V 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 V_DS = 15 V, V_DS = 10 V 0.0057 0.0	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1.4		3	٧	
Description	Gate-Source Leakage	-	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
On-State Drain Current [®] I _{D(on)} V _{DS} = 30 V, V _{GS} = 10 V 30 A Drain-Source On-State Resistance [®] P _{DS} (on) V _{GS} = 10 V, I _D = 20 A 0.0034 0.0047 0.0057 Forward Transconductance [®] 9I _S V _{DS} = 15 V, I _D = 15 A 0.0047 0.0057 Ω Every Transfer Capacitance C _{ISS} V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 3650 pp pF Reverse Transfer Capacitance C _{ISS} V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 635 pp pF Reverse Transfer Capacitance C _{ISS} V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 635 pp pF Total Gate Charge Q _g V _{DS} = 15 V, V _{GS} = 10 V, I _D = 25 A 68 100 nC Gate-Source Charge Q _{gs} V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 25 A 9.4 nC Gate Polari Charge Q _{gs} f = 1 MHz 1.25 2 Ω Gate Polari Charge I _d (off) V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 25 A 9.4 nC Turn-On Delay Time I _d (off) I _d (off) I _D = 10		1 .	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	1		1	<u> </u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			10	μΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	30			A	
Provided Transconductance Pale Vas = 4.5 V, I _D = 15 A Pale Vas = 15 V, I _D = 20 A Pale Vas = 15 V, I _D = 20 A Pale Vas = 15 V, I _D = 20 A Pale Vas = 15 V, I _D = 20 A Pale Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas = 15 V, Vas = 10 V, I _D = 25 A Vas = 15 V, Vas			V _{GS} = 10 V, I _D = 20 A		0.0034	0.0042		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source On-State Resistance ^a	H _{DS(on)}	V _{GS} = 4.5 V, I _D = 15 A		0.0047	0.0057	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 20 A		90		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b						l	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	C _{iss}			3650			
Reverse Transfer Capacitance Crss 300 3			$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		635		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance		20 00		300			
		V _{DC} =	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 25 A		68	100	nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q_g			29	43		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{gs}			12.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 25 \text{ A}$		9.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	Rg	f = 1 MHz		1.25	2	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Delay Time	t _{d(on)}			125	190		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		V 45VP 450		190	280		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	== =		38	60		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f	1D = 10 A, VGEN = 4.3 V, Fig = 1.32		13	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Delay Time	t _{d(on)}			15	25		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	V 45VP 450		15	25	ns	
Fall Time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}			42	65		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time		ID = IOA, $VGEN - IOV$, $IIg - IS2$		8	15		
Pulse Diode Forward Current ^a I_{SM} 60 Body Diode Voltage V_{SD} $I_S = 2.7 A$ 0.74 1.1 V Body Diode Reverse Recovery Time t_{rr} 34 55 ns Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 A$, $dI/dt = 100 A/\mu s$, $T_J = 25 ^{\circ}C$	Drain-Source Body Diode Characteristic	s				1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			5.6		
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A, dl/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 \text{ °C}$ 18 18	Pulse Diode Forward Current ^a	I _{SM}				60	A	
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A, dl/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 \text{ °C}$ 18 18	Body Diode Voltage	V _{SD}	I _S = 2.7 A		0.74	1.1	V	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/µs}, T_J = 25 °C $	Body Diode Reverse Recovery Time				34	55	ns	
Reverse Recovery Fall Time t _a I _F = 10 A, di/dt = 100 A/μs, T _J = 25 °C 18	Body Diode Reverse Recovery Charge		1 10 A 41/44 100 A/45 T 05 00		31	50	nC	
ns ns	Reverse Recovery Fall Time		$I_F = 10 \text{ A}, \text{ GI/GT} = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$		18			
	Reverse Recovery Rise Time				16		ns	

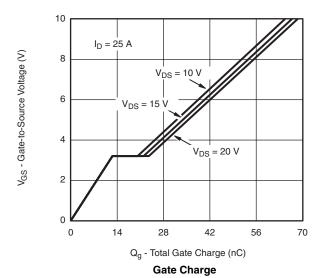

Notes:

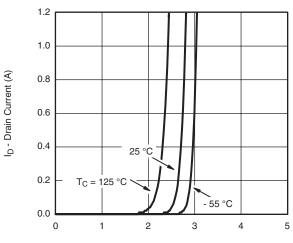
- a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %
- b. Guaranteed by design, not subject to production testing.

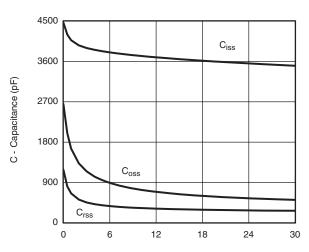
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

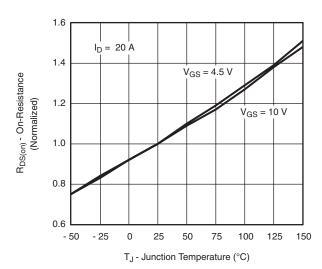


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



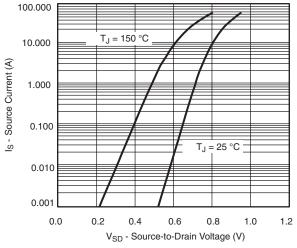

rpg - Brain-to-Source voltage (v

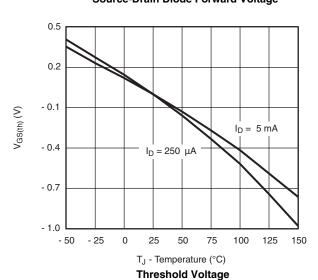

On-Resistance vs. Drain Current and Gate Voltage

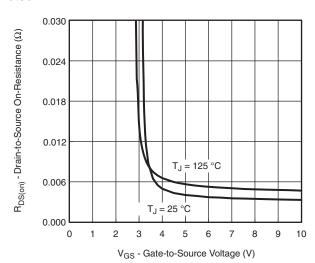

V_{GS} - Gate-to-Source Voltage (V)

Transfer Characteristics

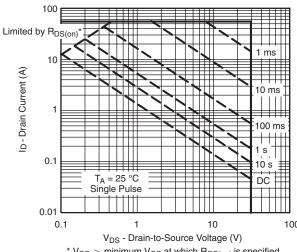
V_{DS} - Drain-to-Source Voltage (V)


Capacitance


On-Resistance vs. Junction Temperature

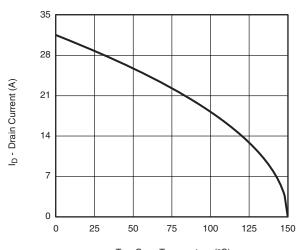

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



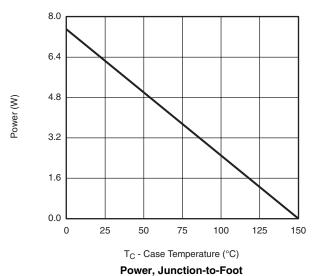
On-Resistance vs. Gate-to-Source Voltage

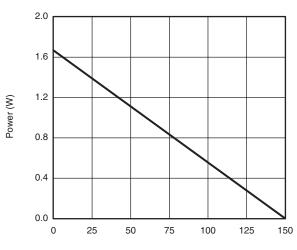
Single Pulse Power, Junction-to-Ambient



* $V_{GS} > minimum \ V_{GS}$ at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

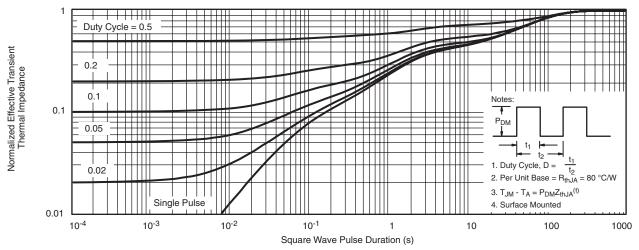



TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

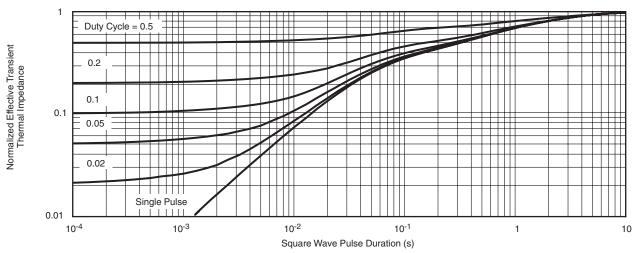
 $T_{\mbox{\scriptsize C}}$ - Case Temperature (°C)

Current Derating*

T_A - Ambient Temperature (°C)


Power, Junction-to-Ambient

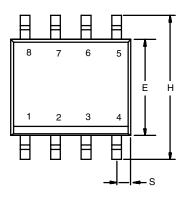
^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

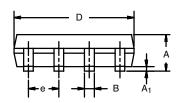

Vishay Siliconix

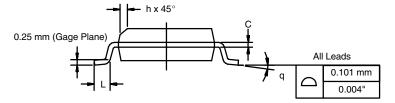
VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

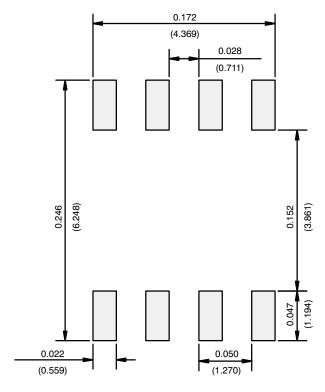

Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73532.


6

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INCHES			
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
Е	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050) BSC		
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
FCN: C-06527-Bey 11-Sen-06						


ECN: C-06527-Rev. I, 11-Sep-06

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06 www.vishay.com

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)

>>点击查看相关商品