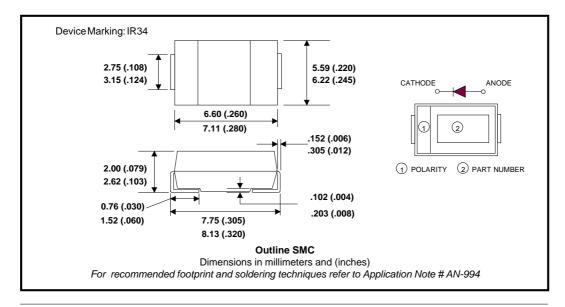

International Rectifier

MBRS340TR

SCHOTTKY RECTIFIER

3 Amp


Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	Α
V _{RRM}	40	V
I _{FSM} @t _p =5µs sine	1580	А
V _F @3.0Apk,T _J =125°C	0.43	V
T _J range	- 55 to 150	°C

Description/Features

The MBRS340TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

MBRS340TR

Bulletin PD-20585 rev. D 03/03

International

TOR Rectifier

Voltage Ratings

	Part number	MBRS340TR
V_R	Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)		

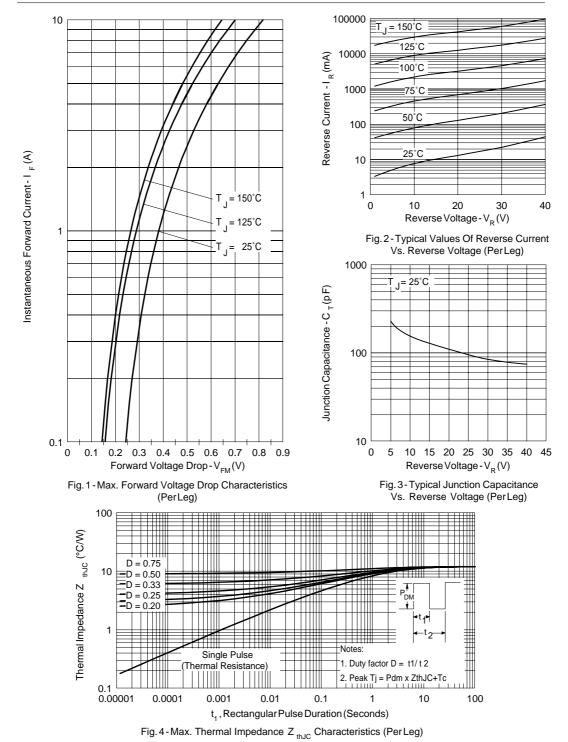
Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L =118 °C, rectangular wave form	
		4.0		50% duty cycle @ T _L = 110 °C, r	ectangular waveform
I _{FSM}	Max. Peak One Cycle Non-Repetitive	1580	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	6	mJ	T _J =25°C, I _{AS} =1.0A, L=12mH	
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters		Value	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop	(1)	0.525	V	@ 3A	T 25 °C
			0.68	V	@ 6A	T _J = 25 °C
			0.43	V	@ 3A	T 405.00
			0.57	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage	(1)	2.0	mA	T _J = 25 °C	
	Current		20	mA	T _J = 100°C	$V_R = rated V_R$
			35	mA	T _J = 125 °C	
Ст	Max. Junction Capacitance		230	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _S	Typical Series Inductance		3.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change		10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T	Max.JunctionTemperatureRange (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max.Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation
R _{thJA}	Max.Thermal Resistance Junction to Ambient	46	°C/W	DCoperation
wt	Approximate Weight	0.24(0.008)	g(oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR34		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \qquad \text{thermal \ runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Bulletin PD-20585 rev. D 03/03

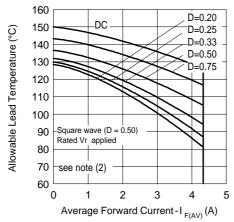


Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

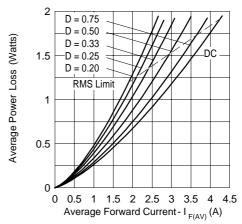


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

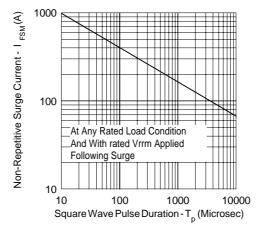
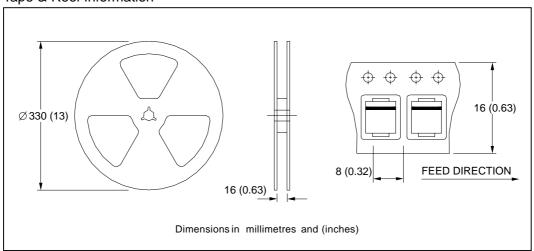
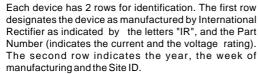
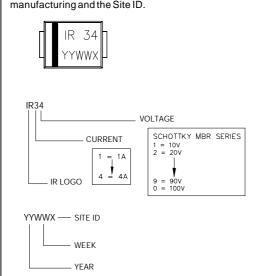



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{aligned} \textbf{(2)} \ \ &\text{Formula used:} \ &\text{T_{C}=T_{J}-(Pd+$Pd}_{REV}$) x \ &\text{R_{thJC};} \\ &\text{Pd=$Forward Power Loss} = &\text{$I_{F(AV)}$} x \ &\text{$V_{\text{FM}} @ (I_{F(AV)}/D)$ (see Fig. 6);} \\ &\text{Pd_{REV}= Inverse Power Loss} = &\text{V_{R1}} x \ &\text{$I_{\text{R}}(1$-D);} \ &\text{$I_{\text{R}} @ V_{\text{R1}}$=$80\%$ rated V_{R}} \end{aligned}$


Tape & Reel Information

Marking & Identification

Ordering Information

MBRS340TR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS340TR - 6000 PIECES

MBRS340TR

Bulletin PD-20585 rev. D 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)