

Vishay Beyschlag

Low Ohmic Wide Terminal Thin Film Chip Resistors

NCW AT low ohmic resistors are the perfect choice for most fields of modern professional power measurement electronics where reliability, stability, power dissipation and robust design is of major concern. The product features extraordinary temperature cycling robustness, verified through extensive testing. The permissible power rating is specified with up to 1 W for size 0612. Typical applications include power electronics in automotive and industrial appliances (e.g. burden resistors).

FEATURES

- Resistance range down to 0.1 Ω
- Low TCR of ± 50 ppm/K

- Excellent overall stability
- Rated power dissipation P₈₅ up to 1 W for size 0612
- Advanced sulfur resistance verified according to ASTM B 809
- Superior moisture resistivity (85 °C; 85 % RH)
- AEC-Q200 qualified
- Superior temperature cycling robustness
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Automotive
- Industrial
- · High power and high temperature applications

TECHNICAL SPECIFICATIONS	NOW OLOG AT	NOW COAC AT
DESCRIPTION	NCW 0406 AT	NCW 0612 AT
Imperial size	0406	0612
Metric size code	RR1016M	RR1632M
Resistance range	0.33 Ω to 0.91 Ω	0.10 Ω to 0.91 Ω
Resistance tolerance	±	1 %
Temperature coefficient	± 50	ppm/K
Rated dissipation P ₈₅ ⁽¹⁾	0.3 W	1 W
Operating voltage, U _{max.} AC _{RMS} /DC	Limite	d by P ₈₅
Permissible film temperature, $\vartheta_{\text{F max.}}^{(1)}$	17	75 °C
Operating temperature range	-55 °C	to 175 °C
Internal thermal resistance (1)	30 K/W	TBD
Permissible voltage against ambient (insulation):		
1 min; U _{ins}	7	'5 V

Note

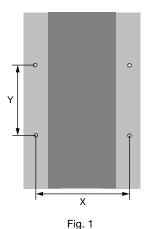
APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

⁽¹⁾ Please refer to APPLICATION INFORMATION below

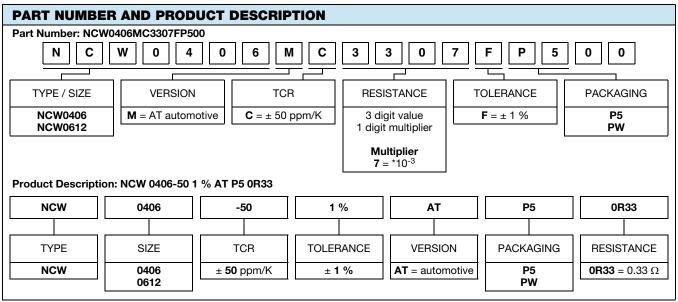

Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION							
OPERATION MODE		STANDARD	POWER	ADVANCED TEMPERATURE			
		P ₇₀	P ₇₀	P ₈₅			
Rated dissipation	NCW 0406 AT	0.2 W	0.25 W	0.3 W			
	NCW 0612 AT	0.5 W	0.75 W	1.0 W ⁽¹⁾			
Operating temperature range		-55 °C to 125 °C	-55 °C to 155 °C	-55 °C to 175 °C			
Permissible film temperature, $g_{\rm F\ max}$	ζ.	125 °C	155 °C	175 °C			
	NCW 0406 AT	0.33 Ω to 0.91 Ω	0.33 Ω to 0.91 Ω	0.33 Ω to 0.91 Ω			
	NCW 0612 AT	0.10 Ω to 0.91 Ω	0.10 Ω to 0.91 Ω	0.10 Ω to 0.91 Ω			
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:	1000 h	≤ 0.15 %	≤ 0.3 %	≤ 0.5 %			
resistance range, Arrivi	8000 h	≤ 0.25 %	≤ 0.5 %	-			
	225 000 h	≤ 1.0 %	-	-			

Notes

- The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance
- (1) Specified power rating requires a thermal resistance $R_{th} \le 90$ K/W of the circuit board assembly

The resistance value of low ohmic precision resistors is influenced by the resistance of the terminations. The exact resistance value of the soldered part on the PCB may deviate depending on e.g. solder quantity, pad layout, and soldering method. The resistance value of the unmounted part can be verified by a 4-point probe on the top side termination as shown below.


DIMENSIONS FOR 4-POINT PROBE						
TYPE / SIZE X Y (μm) Y (μm)						
NCW 0406 AT	870	600				
NCW 0612 AT	1300	1240				

Vishay Beyschlag

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE						
TYPE / SIZE TCR TOLERANCE RESISTANCE E-SERIES						
NCW 0406 AT	± 50 ppm/K	± 1 %	0.33 Ω to 0.91 Ω	E24		
NCW 0612 AT	± 50 ppm/K	± 1 %	0.10 Ω to 0.91 Ω	E24; E96		

PACKAGING								
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS		
NCW 0406 AT	P5	5000	Tape and reel cardboard tape acc. IEC 60286-3, type 1a			Ø 180 mm / 7"		
	PW	20 000		8 mm	4 mm	Ø 330 mm / 13"		
NCW 0612 AT	P5	5000				Ø 180 mm / 7"		

Note

• Products can be ordered using either the PART NUMBER or PRODUCT DESCRIPTION

NCW 0406 AT, NCW 0612 AT

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set instructions established for reproducibility. A homogeneous film of special metal alloy is deposited on a high grade ceramic substrate (Al₂O₃) and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a unique protective coating designed for electrical, mechanical, and climatic protection. The terminations receive a final pure matte tin on nickel plating. The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with IEC 60286-3 Type 1a (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using reflow or vapor phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS-compliant; the pure matte tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven by extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishav.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

Where applicable the resistors are tested within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification **EN 140401-801** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the **IEC 60068** ⁽¹⁾ series. The detail specification refers to the climatic category 55/125/56, which relates to the "standard operation mode" of this datasheet. The NCW 0406 AT is AEC-Q200 qualified.

Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay BEYSCHLAG manufacturing process.

RELATED PRODUCTS

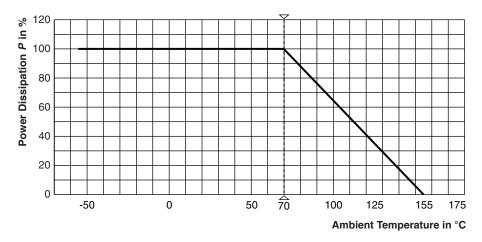
For more information about wide terminal precision resistors with higher resistance values please refer to the following datasheets:

- MCW AT Precision (www.vishav.com/doc?28847)
- MCW AT Professional (www.vishav.com/doc?28796)

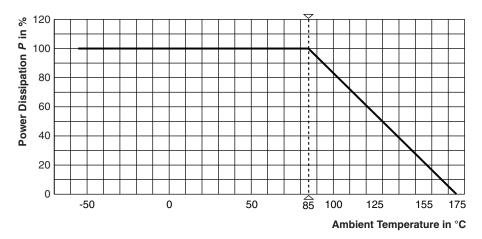
Notes

(1) The quoted IEC standards are also released as EN standards with the same number and identical contents

- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org


(4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

Vishay Beyschlag


FUNCTIONAL PERFORMANCE

Derating - Standard Mode

Derating - Power Mode

Derating - Advanced Temperature Mode

Vishay Beyschlag

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-801, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA / ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

TEST PI	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△ <i>R</i>)				
			Stability for product types:					
			NCW 0406 AT	0.33 Ω to 0.91 Ω				
			NCW 0612 AT	0.10 Ω to 0.91 Ω				
4.5	-	Resistance	-	± 1 % R				
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 155 / 20) °C	± 50 ppm/K				
		Endurance at 70 °C: Standard operation mode	$U = \sqrt{P_{70} \times R};$ 1.5 h on; 0.5 h off; 70 °C; 1000 h 70 °C; 8000 h	± (0.15 % R + 0.05 Ω) ± (0.25 % R + 0.05 Ω)				
4.25.1	-	Endurance at 70 °C: Power operation mode	$U = \sqrt{P_{70} \times R};$ 1.5 h on; 0.5 h off; 70 °C; 1000 h 70 °C; 8000 h	\pm (0.3 % R + 0.05 Ω) \pm (0.5 % R + 0.05 Ω)				
		Endurance at 85 °C: Advanced temperature operation mode	$U = \sqrt{P_{85} \times R};$ 1.5 h on; 0.5 h off; 85 °C; 1000 h	± (0.5 % R + 0.05 Ω)				
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h 155 °C; 1000 h 175 °C; 1000 h	$\pm (0.15 \% R + 0.02 \Omega) \pm (0.3 \% R + 0.05 \Omega) \pm (0.5 \% R + 0.05 \Omega)$				
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.1 % R + 0.05 Ω)				
4.37	67 (Cy)	Damp heat, steady state, accelerated: Standard operation mode	(85 ± 2) °C (85 ± 5) % RH $U = \sqrt{0.1 \times P_{70} \times R}$; $U \le 0.3 \times U_{\text{max.}}$; 1000 h	$\pm (0.5 \% R + 0.05 \Omega)$				

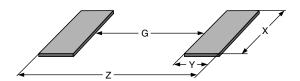
Vishay Beyschlag

Stability for product types: NCW 0406 AT 0.33 Ω to 0.91 Ω	EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\triangle R$)
A 23				Stability for product types:	
4.23.2 2 (Bb) Dry heat UCT; 16 h 4.23.3 30 (Db) Damp heat, cyclic 55 °C; 24 h; ≥ 90 % RH; 1 cycle 4.23.4 1 (Ab) Gold LCT; 2 h 4.23.5 13 (M) Low air pressure 55 °C; 24 h; ≥ 90 % RH; 2 cycle 55 °C; 24 h; ≥ 90 % RH; 3 cycle 4.23.6 30 (Db) Damp heat, cyclic 55 °C; 24 h; ≥ 90 % RH; 5 cycles 4.23.7 - DC load UT 1 cycle 4.24.8 - Short time overload: 5 cycles UT 2 cycle UT 2 cycle 4.25 °C; 2 h ± (0.1 % R + 0.05 Ω) 5 cycles UT 2 cycle 5 cycles 30 min at -55 °C; 2 h ± (0.25 % R + 0.05 Ω) 50 min at -125 °C; NCW 0406 AT: 3000 cycles Ut 1 cycles Ut 1 cycles UT 1 cycle 4.14 (Na) UT 1 cycle 4.15 - Short time overload: 5 cycles UT 2 cycles UT 1 cycle 4.26 (Cycles Short time overload: 5 cycles UT 2 cycles UT 1 cycle 4.27 (Cycles UT 1 cycles UT 1 cycl				NCW 0406 AT	0.33 Ω to 0.91 Ω
Standard operation mode: Dry heat Dry				NCW 0612 AT	0.10 Ω to 0.91 Ω
4.23.4 1 (Ab) Cold LCT; 2 h 4.23.5 13 (M) Low air pressure 4.23.6 30 (Db) Damp heat, cyclic 55 °C; 24 h ≥ 90 % RH; 5 cycles U = √P ₇₀ x R ≤ U _{max} ; 1 min; LCT = 125 °C; 1 (Ab) Storage at low temperature 1 (Ab) Storage at low temperature Timin; LCT = 125 °C; 1 (Ab) Storage at low temperature 1 (Ab) Storage at low temperature Timin; LCT = 125 °C; 30 min at 155 °C; 30 min at 125 °C; NCW 0405 AT 3000 cycles Poly NCW 0412 AT: TBD 4.13 - Short time overload: Short time overload: Short time overload: Power operation mode Short time overload: Power operation mode 4.13 - Electro Static Discharge (Human Body Model) Endurance by sweeping; 10 Hz to 2000 Hz; 10 no resonance; 10 no visible damage Endurance by sweeping; 10 Hz to 2000 Hz; 10 no visible damage Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (3 ± 0.3) s Good tinning (≥ 95 % covered); no visible damage 4.18 S8 (Td) Resistance to cycles inches to solder into host Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; no visible damage Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s Solder bath method; SnP40; non-activated flux; (215 ± 3) °C; (2 ± 0.2) s	4.23				
1 cycle 4.23.4 1 (Ab) Cold LCT; 2 h 4.23.5 13 (M) Low air pressure 8.5 kPa; 2 h; (25 ± 10) °C 55 °C; 24 h ≥ 90 % RH; 5 cycles U = √P ₇₀ X R ≤ U _{max} ; 1 min; LCT = -55 °C; UCT = 125 °C - 1 (Ab) Storage at low temperature - 1 (Ab) Storage at low temperature - 1 (Ab) Rapid change of temperature - 1 (Ab) Extended rapid change of temperature - 14 (Na) Short time overload: Standard operation mode - Short time overload: Short time overload: Short time overload: Power operation mode 4.13 - Electro Static Discharge (Human Body Model) - Vibration - Solder bath method; Sno Y; 7.5 h Solder bath method; Sno Solder bath method; Sno Sch (2 ± 0.3) s - Coordinate (Lot % R + 0.01 Ω) - Coordinate (Lot % R + 0.05 Ω)	4.23.2	2 (Bb)	Dry heat	UCT; 16 h	
4.23.5 13 (M) Low air pressure 8.5 kPa; 2 h; (25 ± 10) °C 55 °C; 24 h ≥ 90 % RH; 5 cycles U = √P ₇₀ x R ≤ U _{max} ; 1 min; LCT = -55 °C; UCT = 125 °C UCT = 125 °C UCT = 125 °C UCT = 125 °C; 2 h ± (0.1 % R + 0.01 Ω) 4.19 14 (Na) Storage at low temperature 30 min at -55 °C; 2 h ± (0.25 % R + 0.05 Ω); (≥ 50 % of initial shear force) with time overload; Standard operation mode Short time overload; Power operation mode Short time overload; Power operation mode (Human Body Model) Electro Static Discharge (Human Body Model) Electro Static Discharge (Human Body Model) Endurance by weeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h Solder bath method; no visible damage (SnPa y C); (25 % C) weep (SnPa y C); (25 % C) weeping; non-activated flux; (23 5 ± 3) °C; (2 ± 0.2) s Solder bath method; 10 × R + 0.01 Ω) Solder bath method; 10 × R + 0.02 Ω)	4.23.3	30 (Db)	Damp heat, cyclic		
4.23.5 13 (M) Low air pressure 4.23.6 30 (Db) Damp heat, cyclic 55 °C; 24 h ≥ 90 % RH; 5 cycles U = √P ₇₀ × R ≤ U _{max} ; 1 min; LCT = -55 °C; UCT = 125 °C - 1 (Ab) Storage at low temperature -55 °C; 2 h ± (0.1 % R + 0.01 Ω) Rapid change of temperature 30 min at -55 °C; 30 min at 155 °C; 30 min at 155 °C; 1000 cycles 4.19 14 (Na) Extended rapid change of temperature -58 Nort time overload: Standard operation mode -58 Nort time overload: Power operation mode -58 Nort time overload: Power operation mode -59 Nort time overload: Power operation mode -50	4.23.4	1 (Ab)	Cold	LCT; 2 h	+ (0.5.94 P + 0.05.0)
4.23.7 - DC load $S_{P_{0}} \times R \le U_{max}$:	4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; (25 ± 10) °C	± (0.5 % A + 0.05 \(\frac{1}{2}\)
4.23.7 -	4.23.6	30 (Db)	Damp heat, cyclic	5 cycles	
Rapid change of temperature 30 min at -55 °C; 30 min at 155 °C; 1000 cycles ± (0.25 % R + 0.05 Ω)	4.23.7	-	DC load	1 min; LCT = -55 °C;	
4.19 14 (Na)	-	1 (Ab)		-55 °C; 2 h	$\pm (0.1 \% R + 0.01 \Omega)$
Extended rapid change of temperature $\begin{pmatrix} 30 \text{ min at } 125 \text{ °C}; \\ NCW 0406 \text{ AT; } 3000 \text{ cycles } (2) \\ NCW 0612 \text{ AT; } TBD \end{pmatrix} \begin{pmatrix} \pm (0.25 \% R + 0.05 \Omega); \\ \ge 50 \% \text{ of initial shear force)} \end{pmatrix}$ 4.13 $\frac{1}{2} \begin{pmatrix} \text{Short time overload:} \\ \text{Standard operation mode} \\ \text{Short time overload:} \\ \text{Power operation mode} \end{pmatrix} \begin{pmatrix} U = 2.5 \times \sqrt{P_{70} \times R} \\ \le 2 \times U_{\text{max.}}; 5 \text{ S} \end{pmatrix} \\ & \pm (0.1 \% R + 0.01 \Omega) \end{pmatrix} \\ & \pm (0.25 \% R + 0.05 \Omega) \end{pmatrix}$ 4.38 $\frac{1}{2} \begin{pmatrix} \text{Electro Static Discharge} \\ \text{(Human Body Model)} \end{pmatrix} \begin{pmatrix} \text{IEC } 61340 - 3 - 1 \text{ (1)}; \\ 3 \text{ pos. + 3 neg.} \\ \text{(equivalent to MIL-STD-883, method } 3015) \\ \text{SD0 V} \end{pmatrix} \\ & \pm (0.5 \% R + 0.05 \Omega) \end{pmatrix}$ Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude $\le 1.5 \text{ mm or esonance}; \\ \text{amplitude } \le 1.5 \text{ mm or } \le 200 \text{ m/s}^2; 7.5 \text{ h} \end{pmatrix}$ Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s \text{Good tinning } (\geq 95 \% \text{ covered}); no visible damage} \\ & 4.17 \qquad 58 \text{ (Td)} \qquad \text{Solderability} \qquad \text{Solder bath method; SnAg3Cu.5 or SnAg3.5; non-activated flux; } \\ & \text{Good tinning } (\ge 95 \% \text{ covered}); no visible damage} \\ & 4.18 \qquad 58 \text{ (Td)} \qquad \text{Passistance to soldering heat} \qquad \text{Solder bath method; } \\ & \text{Solder bath method;} \qquad \pm (0.1 \% R + 0.02 \Omega) \end{pmatrix}				30 min at 155 °C;	± (0.25 % R + 0.05 Ω)
4.13 - Standard operation mode $U = 2.5 \times \sqrt{P_{70} \times R} \le 2 \times U_{\text{max}}$; 5 s $\pm (0.1 \% R + 0.01 \Omega)$ 4.38 - Electro Static Discharge (Human Body Model) IEC 61340-3-1 (¹¹); 3 pos. + 3 neg. (equivalent to MIL-STD-883, method 3015) 500 V 4.22 - 6 (Fc) Vibration Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or $\le 200 \text{ m/s}^2$; 7.5 h Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s Good tinning ($\ge 95 \%$ covered); no visible damage Solder bath method; SnAg3Cu.0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s 4.18 - 58 (Td) Resistance to soldering heat Solder bath method; $\le 0.1 \% R + 0.02 \Omega$	4.19	14 (Na)		30 min at 125 °C; NCW 0406 AT: 3000 cycles ⁽²⁾	
Power operation mode $\pm (0.25 \% R + 0.05 \Omega)$ 4.38 - Electro Static Discharge (Human Body Model) IEC 61340-3-1 (1); 3 pos. + 3 neg. (equivalent to MIL-STD-883, method 3015) 500 V Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s For example 10 mode $\pm (0.25 \% R + 0.05 \Omega)$ Electro Static Discharge (equivalent to MIL-STD-883, method 3015) $\pm (0.1 \% R + 0.05 \Omega)$ Endurance by sweeping; 10 Hz to 2000 Hz; amplitude ≤ 1.5 mm or $\pm (0.1 \% R + 0.01 \Omega)$ no visible damage Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s Electro Static Discharge (equivalent to MIL-STD-883, method 3015) $\pm (0.1 \% R + 0.05 \Omega)$	4.10			$U = 2.5 \times \sqrt{P_{70} \times R}$	$\pm (0.1 \% R + 0.01 \Omega)$
4.38 - Electro Static Discharge (Human Body Model) $= \frac{3 \text{ pos.} + 3 \text{ neg.}}{(\text{equivalent to MIL-STD-883, method } 3015)} \pm (0.5 \% R + 0.05 \Omega)$ 4.22 $= 6 \text{ (Fc)}$ Vibration $= \frac{10 \text{ Fc}}{10 \text{ Hz}} = \frac{10 \text{ Hz}}{10 \text{ Hz}} = \frac{10 \text{ Hz}}{10 \text{ Hz}} = \frac{10.1 \% R + 0.01 \Omega}{10 \text{ no visible damage}} = \frac{10.1 \% R + 0.01 \Omega}$	4.13	-		$\leq 2 \times U_{\text{max}}^{\gamma}$, 5 s	± (0.25 % R + 0.05 Ω)
4.22 6 (Fc) Vibration	4.38	-		3 pos. + 3 neg. (equivalent to MIL-STD-883, method 3015)	± (0.5 % R + 0.05 Ω)
SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s 4.17 Solderability Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s Good tinning (\geq 95 % covered); no visible damage Good tinning (\geq 95 % covered); no visible damage 4.18 Solder bath method; \geq 95 % covered); no visible damage 4.18 Solder bath method; \neq (0.1 % \neq 4 0.02 \neq 0)	4.22	6 (Fc)	Vibration	10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or	
Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; no visible damage (235 ± 3) °C; (2 ± 0.2) s Solder bath method; $\pm (0.1 \% R + 0.02 \Omega)$	4.17 58 (Td)			SnPb40; non-activated flux	
			Solderability	SnAg3Cu0.5 or SnAg3.5; non-activated flux;	
	4.18	58 (Td)	Resistance to soldering heat		

Vishay Beyschlag

TEST P	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△ <i>R</i>)				
			Stability for product types:					
			NCW 0406 AT	0.33 Ω to 0.91 Ω				
			NCW 0612 AT	0.10 Ω to 0.91 Ω				
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol +50 °C; method 2	No visible damage				
4.32	21 (Ue ₃)	Shear (adhesion)	9 N	No visible damage				
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm (0.1 % R + 0.01 Ω) no visible damage; no open circuit in bent position				
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}; (60 \pm 5) {\rm s}$	No flashover or breakdown				
4.35	-	Flammability	Needle flame test; 10 s	No burning after 30 s				

Notes


- Resistance measured in mounted condition
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) Tested on a 4-layer printed circuit board with SAC micro alloy

Vishay Beyschlag

$W W_T$

DIMENSIONS AND MASS								
TYPE / SIZE	H (mm)	L (mm)	W (mm)	W _T (mm)	T _t (mm)	T _b (mm)	MASS (mg)	
NCW 0406 AT	0.32 ± 0.05	1.0 ± 0.15	1.5 ± 0.15	> 75 % of W	0.2 + 0.1/- 0.15	0.2 ± 0.1	1.9	
NCW 0612 AT	0.45 ± 0.15	1.6 ± 0.15	3.1 ± 0.15	> 75 % of W	0.25 ± 0.15	0.3 ± 0.15	9.0	

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS								
REFLOW SOLDERING								
TYPE / SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)				
NCW 0406 AT	0.35	0.55	1.75	1.45				
NCW 0612 AT	0.75	0.7	3.3	2.15				

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x (1), or in publication IPC-7351
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)