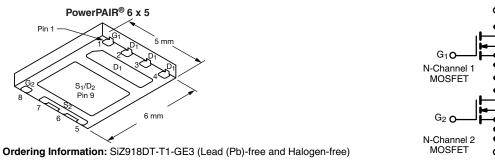


O S₁/D₂

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	$R_{DS(on)}(\Omega)$ (Max.)	I _D (A)	Q _g (Typ.)			
Channel-1	30	$0.0120 \text{ at V}_{GS} = 10 \text{ V}$	16 ^a	6.8 nC			
Channel-1		0.0145 at $V_{GS} = 4.5 \text{ V}$	16 ^a	0.0110			
Channel-2	20	0.0037 at V _{GS} = 10 V	28 ^a	32 nC			
Griannei-2	30	0.0045 at $V_{GS} = 4.5 \text{ V}$	28 ^a	32110			

FEATURES


- TrenchFET® Power MOSFETs
- 100 % $\rm R_{\rm g}$ and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

HALOGEN FREE

APPLICATIONS

- Notebook System Power
- POL
- Synchronous Buck Converter

Parameter	Symbol	Channel-1	Channel-2	Unit		
Drain-Source Voltage	V _{DS}	30		V		
Gate-Source Voltage	V _{GS}	± 20				
	T _C = 25 °C		16 ^a	28 ^a		
Continuous Drain Current /T 150 °C	T _C = 70 °C		16 ^a	28 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	14.3 ^{b, c}	26 ^{a, b, c}		
	T _A = 70 °C	1	11.4 ^{b, c}	21 ^{a, b, c}	Α	
Pulsed Drain Current (t = 300 μs)	I _{DM}	50	110	A		
Continuous Source Drain Diode Current	T _C = 25 °C	- I _S	16 ^a	28 ^a		
Continuous Source Drain Diode Current	T _A = 25 °C		3.4 ^{b, c}	4.3 ^{b, c}		
Single Pulse Avalanche Current		I _{AS}	18	35		
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	16	61	mJ	
	T _C = 25 °C		29	100		
Maximum Power Dissipation	T _C = 70 °C	1 5	18	64	W	
Maximum Fower Dissipation	T _A = 25 °C	P_{D}	4.2 ^{b, c}	5.2 ^{b, c}	vv	
	T _A = 70 °C		2.7 ^{b, c}	3.3 ^{b, c}		
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150		00		
Soldering Recommendations (Peak Temperature	-	26	60	°C		

THERMAL RESISTANCE RATINGS									
Parameter			Channel-1		Channel-2		<u> </u>		
		Symbol	Тур.	Max.	Тур.	Max.	Unit		
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	24	30	19	24	°C/W		
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	3.4	4.3	1	1.25	O/ VV		

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- Maximum under steady state conditions is 65 °C/W for channel-1 and 55 °C/W for channel-2.

Document Number: 63783 S12-0543 Rev. A, 12-Mar-12 For more information please contact: pmostechsupport@vishav.com

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static						l	<u> </u>	
	,,	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-1	30				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V	
V. Tanananakan Osaffisian	N/ /T	I _D = 250 μA	Ch-1		33			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		37		mV/°C	
A. Tamana watuwa Ca afficiant	A)/ /T	I _D = 250 μA	Ch-1		- 5			
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 7.5			
Cota Threehold Voltage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1		2.2	V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-2	1.2		2.2	V	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nA	
date course counage	·G55		Ch-2			± 100	11/1	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	μΑ	
	.088	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5	μΛ	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55 ^{\circ}\text{C}$	Ch-2			5		
0 0 1 D 1 0 1b	1	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20			۸	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	20			Α	
		$V_{GS} = 10 \text{ V}, I_D = 13.8 \text{ A}$	Ch-1		0.0100	0.0120		
h	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0030	0.0037	Ω	
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 12.6 \text{ A}$	Ch-1		0.0120	0.0145		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0035	0.0045		
Face and Transport and the base of the bas	a .	V _{DS} = 10 V, I _D = 13.8 A	Ch-1		47			
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		116		S	
Dynamic ^a								
Input Capacitance	C _{iss}	Observat 4	Ch-1		790			
mput Supusitarios	OISS	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		3830			
Output Capacitance	C _{oss}	VDS = 10 v, vGS = 0 v, 1 = 1 1011 12	Ch-1		190		pF	
		Channel-2	Ch-2		670			
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		76			
		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 13.8 A	Ch-2 Ch-1		315 14	21	nC	
	-	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		67.3	105		
Total Gate Charge	Qg	7 _{DS} = 10 1, 1 _{GS} = 10 1, 1 _D = 20 71	Ch-1		6.8	11		
		Channel-1	Ch-2		32	48		
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 13.8 \text{ A}$	Ch-1		2.6			
Gate-Source Charge	Q_{gs}	Channel 0	Ch-2		10.8			
0 . 5 . 0	Q _{gd}	Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$			1.9			
Gate-Drain Charge					9.3		1	
Gate Resistance	R_{g}	f = 1 MHz		0.4	2	4	Ω	
Gate i lesistatice	' 'g	1 — 1 IVII IZ	Ch-2	0.2	1.1	2.2	32	

Notes:

a. Guaranteed by design, not subject to production testing.

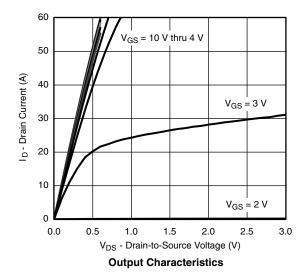
b. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

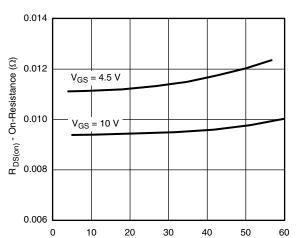
Vishay Siliconix

Parameter Symbol		Test Conditions	Min.	Тур.	Max.	Unit	
Dynamic ^a					•	•	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		15	30	
<u> </u>	, ,	$V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		30	60	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2		12 33	20 65	
		Channel 0	Ch-1		20	40	
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		40	80	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	Ch-1		10	20	ns
raii Time	чf	g GEN g	Ch-2		12	25	
Turn On Doloy Time	t., ,		Ch-1		10	20	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		15	30	
Rise Time	+	$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-1		12	20	
nise Tille	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$			22	25	1
Turn Off Dolay Time	t _{d(off)}	Channel-2	Ch-1		20	40	- - -
Turn-Off Delay Time		$V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		40	80	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_q = 1 \Omega$	Ch-1		10	20	
i an Time	ч	ŭ	Ch-2		10	20	
Drain-Source Body Diode Characteristi	cs						
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1			16	A
Commission Stand Broad Carrotte		.0 = -	Ch-2			28	
Pulse Diode Forward Current ^a	I _{SM}		Ch-1 Ch-2			50]
T die Biede i erward edirent	OW					110	
Body Diode Voltage	V _{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-1		0.85	1.2	V
Tou, Troub voltage		$I_{S} = 10 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2		0.8	1.2	
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		20	40	ns
Body Blode Heverse Hecovery Time	۲rr	Observation 4	Ch-2		30	60	113
Body Diode Reverse Recovery Charge	Q _{rr}	Channel-1 $I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °C$	Ch-1		10	20	nC
Ondigo	~11	1- 10 / 1, απαι = 100 / νμο, 1 ₁ = 20 0	Ch-2		21	40	
Reverse Recovery Fall Time	ta	Channel-2	Ch-1		11		
	a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		17		ns
Reverse Recovery Rise Time	t _b		Ch-1		9		
			Ch-2		13		

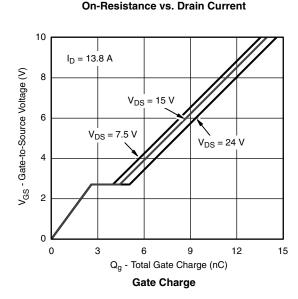
Notes:

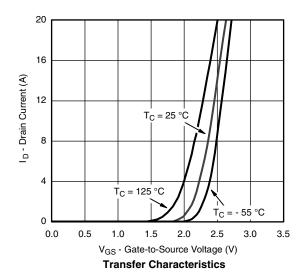
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

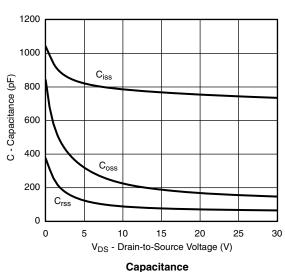

a. Guaranteed by design, not subject to production testing.

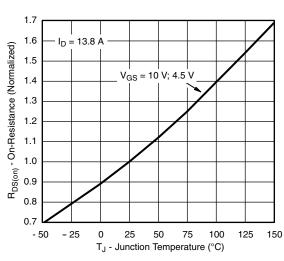

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

Vishay Siliconix

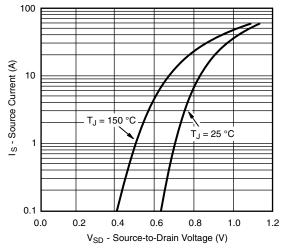


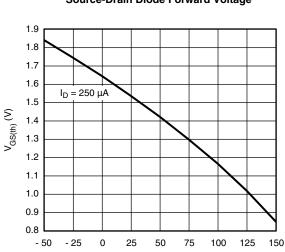

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

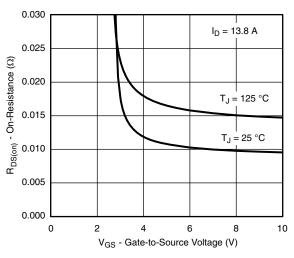


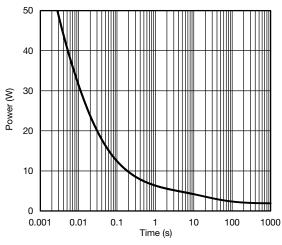


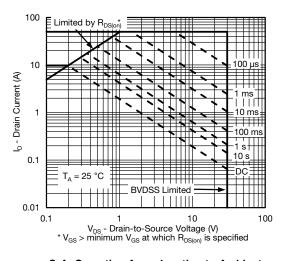
ID - Drain Current (A)




On-Resistance vs. Junction Temperature

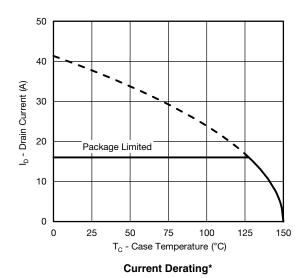

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

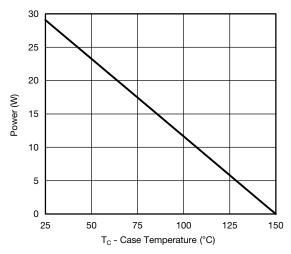

Source-Drain Diode Forward Voltage


T_J - Temperature (°C) Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

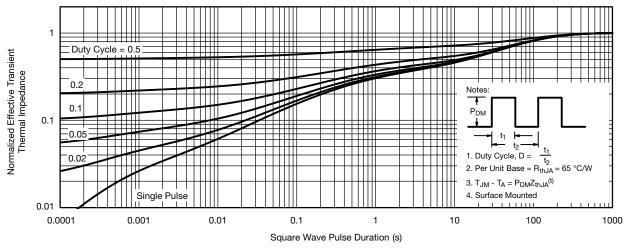
Single Pulse Power



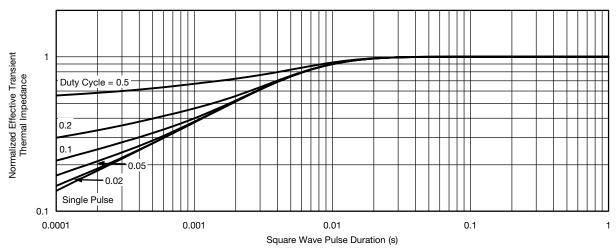

Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

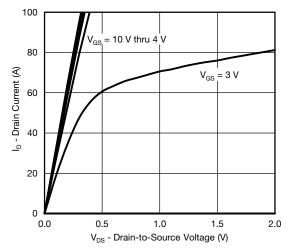
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

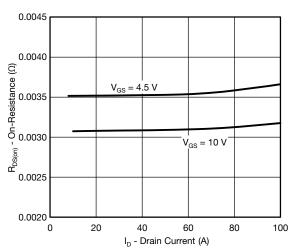


Power, Junction-to-Case

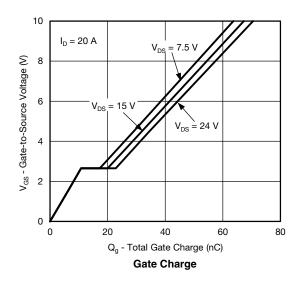

^{*} The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

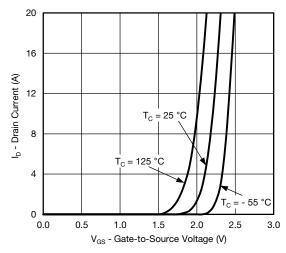
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

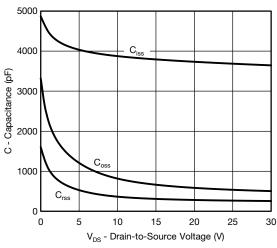

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix

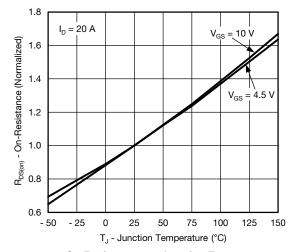

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



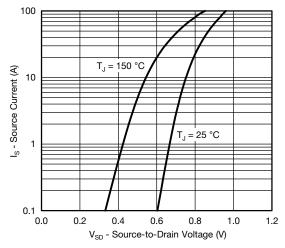
Output Characteristics

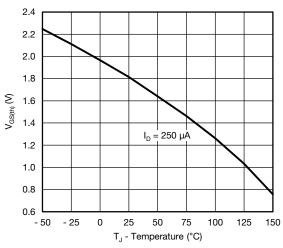


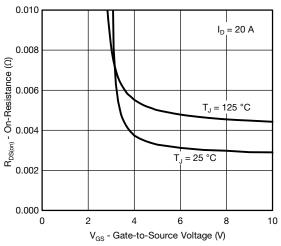
On-Resistance vs. Drain Current

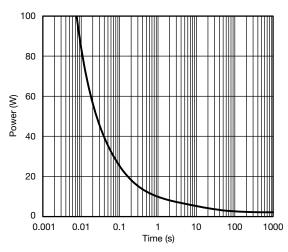


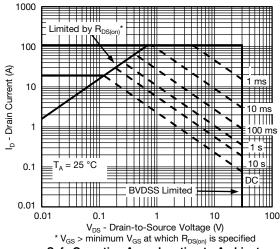
Transfer Characteristics


Capacitance

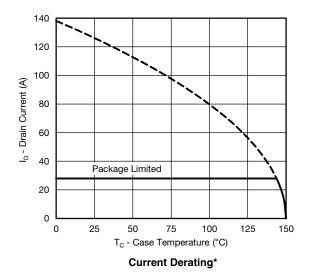

On-Resistance vs. Junction Temperature

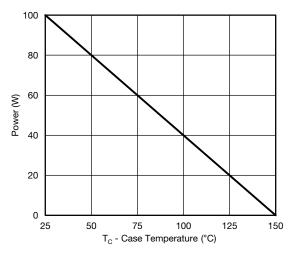

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage



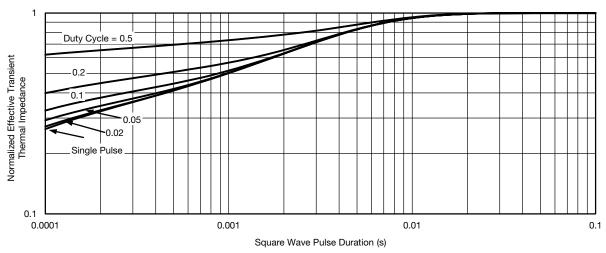

Single Pulse Power

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

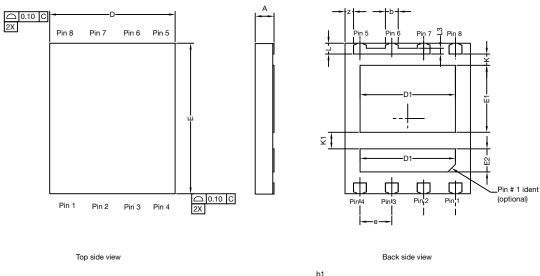


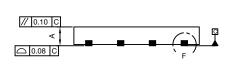
Power, Junction-to-Case

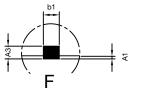

^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

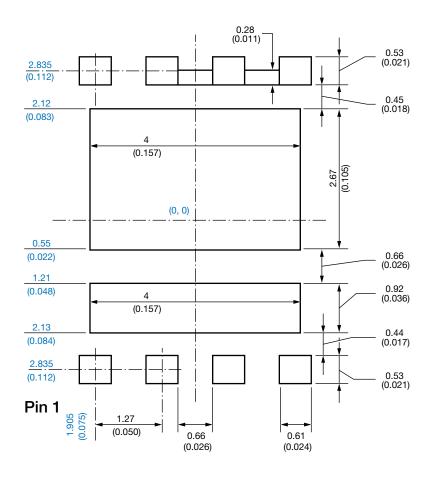
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63783.


Document Number: 63783 S12-0543 Rev. A, 12-Mar-12 For more information please contact: pmostechsupport@vishav.com

PowerPAIR® 6 x 5 Case Outline



	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	0.028	0.030	0.032	
A1	0.00	-	0.10	0.000	-	0.004	
A3	0.15	0.20	0.25	0.006	0.007	0.009	
b	0.43	0.51	0.61	0.017	0.020	0.024	
b1		0.25 BSC			0.010 BSC		
D	4.90	5.00	5.10	0.192	0.196	0.200	
D1	3.75	3.80	3.85	0.148	0.150	0.152	
E	5.90	6.00	6.10	0.232	0.236	0.240	
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107	
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099	
E2	0.87	0.92	0.97	0.034	0.036	0.038	
е		1.27 BSC		0.050 BSC			
K Option AA (for W/B)	0.45 typ.				0.018 typ.		
K Option AB (for BWL)	0.65 typ.				0.025 typ.		
K1	0.66 typ.			0.025 typ.			
L	0.33	0.43	0.53	0.013	0.017	0.020	
L3	0.23 BSC			0.009 BSC			
Z		0.34 BSC		0.013 BSC			
Z ECN: T14-0782-Rev. C, 22-Dec- DWG: 6005	<u> </u> -14	0.34 BSC			0.013 BSC		

Revision: 22-Dec-14 1 Document Number: 63656

Recommended Minimum PAD for PowerPAIR® 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)