

APPROVAL SHEET

RFBPF Series - 2012(0805)- RoHS Compliance

MULTILAYER CERAMIC BAND PASS FILTER

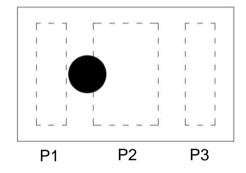
Halogens Free Product

2.4 GHz ISM Band Working Frequency

P/N: RFBPF2012040AHT

*Contents in this sheet are subject to change without prior notice.

FEATURES


- 1. Miniature footprint: 2.0 X 1.2 X 0.4 mm³
- 2. Low Profile Thickness
- 3. High Rejection and Low Insertion Loss
- 4. High attenuation on 2170 MHz & 2nd harmonic suppressed
- 5. LTCC process

APPLICATIONS

- 1. 2.4GHz ISM band RF applications
- 2. Bluetooth, Wireless LAN 802.11b/g/n, HomeRF

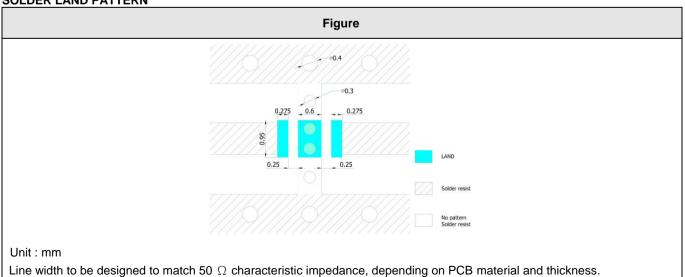
CONSTRUCTION

Top view

PIN	Connection		
1	Input port		
2	GND		
3	Output port		

DIMENSIONS


Figure	Symbol	Dimension (mm)
Top view	L	2.00 ± 0.15
Top view	W	1.25 ± 0.10
>	Т	0.45 ± 0.10
$ \begin{array}{c c} & & \\$	А	0.95 ± 0.10
Bottom view	В	0.275 ± 0.10
	С	0.25 ± 0.10
Side view	D	0.60 ± 0.10
Side view	Е	0.175 ± 0.10
	F	0.15 ± 0.10


ELECTRICAL CHARACTERISTICS

RFBPF2012040AHT	Specification	
Frequency range	2400 ~ 2500 MHz	
Insertion Loss	2.5 dB max	
	25 dB min.@ 746 ~ 764MHz	
	30 dB min.@ 824 ~ 849MHz	
	26 dB min.@ 869 ~ 960MHz	
	28 dB min.@ 1570 ~ 1580MHz	
	28 dB min.@ 1710 ~ 1785MHz	
Attenuation	30 dB min.@ 1850 ~ 1910MHz	
	30 dB min.@ 1930 ~ 1990MHz	
	30 dB min.@ 2110 ~ 2170MHz	
	15 dB min.@ 3300 ~ 3800MHz	
	35 dB min.@ 4800 ~ 5000MHz	
	20 dB min.@ 7200 ~ 7450.5MHz	
VSWR	2.0 max	
Impedance	50 Ω	
Operation Temperature Range	-40°C ~ +85°C	
Moisture sensitivity levels MSL is LEVEL 1 (Refer to : IPC/JEDEC J-STD-020)		

Typical Electrical Chart

SOLDER LAND PATTERN

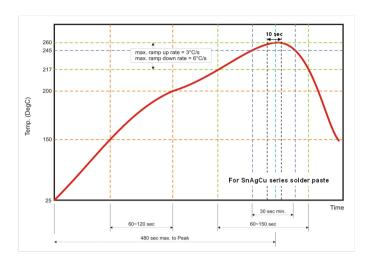
RELIABILITY TEST

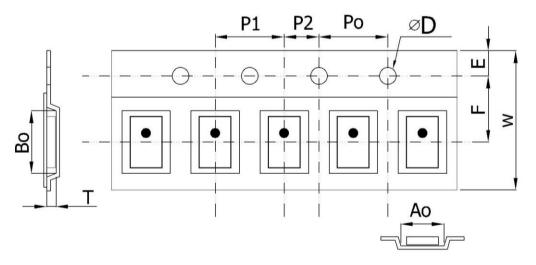
Test item	Test condition / Test method	Specification
Solderability	*Solder bath temperature : 235 ± 5°C	At least 95% of a surface of each terminal
JIS C 0050-4.6	*Immersion time : 2 ± 0.5 sec	electrode must be covered by fresh solder.
JESD22-B102D	Solder : Sn3Ag0.5Cu for lead-free	
Leaching	*Solder bath temperature : 260 ± 5°C	Loss of metallization on the edges of each
(Resistance to	*Leaching immersion time : 30 \pm 0.5 sec	electrode shall not exceed 25%.
dissolution of	Solder : SN63A	Shoulde Gridii Not Skeedd 2070.
metallization)		
IEC 60068-2-58		
Resistance to soldering	*Preheating temperature∶ 120~150°C,	No mechanical damage.
heat JIS C 0050-5.4	1 minute.	Electrical specification shall satisfy the
313 0 0030-3.4	*Solder temperature : 270±5°C	descriptions in electrical characteristics under
	*Immersion time : 10±1 sec	the operational temperature range within -40
		~ 85°C.
	Solder : Sn3Ag0.5Cu for lead-free	Loss of metallization on the edges of each
	Measurement to be made after keeping at	_
	room temperature for 24±2 hrs	electrode shall not exceed 25%.
	loom temperature for 2 fills file	
Drop Test	*Height: 75 cm	No mechanical damage.
JIS C 0044	*Test Surface : Rigid surface of concrete or	Electrical specification shall satisfy the
Customer's specification.	steel.	descriptions in electrical characteristics under
	*Times : 6 surfaces for each units ; 2 times	the operational temperature range within -40
		~ 85°C.
	for each side.	
Vibration	*Frequency: 10Hz~55Hz~10Hz(1min)	No mechanical damage.
JIS C 0040	*Total amplitude: 1.5mm	Electrical specification shall satisfy the
		descriptions in electrical characteristics under
	*Test times : 6hrs.(Two hrs each in three	the operational temperature range within -40
	mutually perpendicular directions)	~ 85°C.
Adhesive Strength	*Pressurizing force :	No remarkable damage or removal of the
of Termination	5N(≦0603) ; 10N(>0603)	termination.
JIS C 0051- 7.4.3	*Test time: 10±1 sec	
Bending test		
JIS C 0051- 7.4.1	The middle part of substrate shall be	No mechanical damage.
7.7.1	pressurized by means of the pressurizing rod	Electrical specification shall satisfy the
	at a rate of about 1 mm/s per second until the	descriptions in electrical characteristics under
	deflection becomes 1mm/s and then pressure	the operational temperature range within -40
	shall be maintained for 5±1 sec.	~ 85°C.
	Measurement to be made after keeping at	
	room temperature for 24±2 hours	

Temperature cycle JIS C 0025	 30±3 minutes at -40°C±3°C, 10~15 minutes at room temperature, 30±3 minutes at +85°C±3°C, 10~15 minutes at room temperature, Total 100 continuous cycles Measurement to be made after keeping at room temperature for 24±2 hrs 	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
High temperature JIS C 0021	*Temperature: 85°C±2°C *Test duration: 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
Humidity (steady conditions) JIS C 0022	*Humidity: 90% to 95% R.H. *Temperature: 40±2°C *Time: 1000+24/-0 hrs. Measurement to be made after keeping at room temperature for 24±2 hrs % 500hrs measuring the first data then 1000hrs data	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
Low temperature JIS C 0020	*Temperature : -40°C±2°C *Test duration : 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.

SOLDERING CONDITION

Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 2,



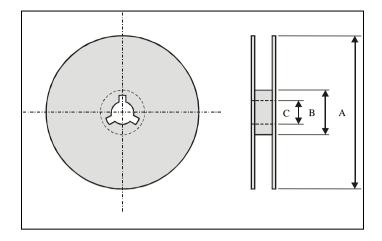

Fig 2. Infrared soldering profile

ORDERING CODE

RF	BPF	201204	0	Α	Н	Т
Walsin	Product Code	Dimension code	Unit of	Application	Specification	Packing
RF device	BPF:	Per 2 digits of Length,	dimension	A: 2.4GHZ ISM	Design code	T : Reeled
	Band Pass Filter	Width, Thickness:	0 : 0.1 mm	Band		
		e.g. :	1 : 1.0 mm			
		201204 =				
		Length 20,				
		Width 12,				
		Thickness 04				

Minimum Ordering Quantity: 2000 pcs per reel.

PACKAGING



Paper Tape specifications (unit :mm)

Index	Ao	Во	ΦD	Т	W
Dimension (mm)	1.32 ± 0.10	2.25 ± 0.10	1.55 + 0.05	0.80 ± 0.10	8.0 ± 0.10
Index	E	F	Po	P1	P2
Dimension (mm)	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05

Reel dimensions

Index	Α	В	С
Dimension (mm)	Ф178.0	Ф60.0	Ф13.0

Taping Quantity: 2000 pieces per 7" reel

CAUTION OF HANDLING

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects, which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- (2) Aerospace equipment
- (3) Undersea equipment
- (4) Medical equipment
- (5) Disaster prevention / crime prevention equipment
- (6) Traffic signal equipment
- (7) Transportation equipment (vehicles, trains, ships, etc.)
- (8) Applications of similar complexity and /or reliability requirements to the applications listed in the above.

Storage condition

- (1) Products should be used in 6 months from the day of WALSIN outgoing inspection, which can be confirmed.
- (2) Storage environment condition.
 - Products should be storage in the warehouse on the following conditions.

■ Temperature : -10 to +40°C

Humidity : 30 to 70% relative humidity

- Don't keep products in corrosive gases such as sulfur. Chlorine gas or acid or it may cause oxidization of electrode, resulting in poor solderability.
- Products should be storage on the palette for the prevention of the influence from humidity, dust and son on.
- Products should be storage in the warehouse without heat shock, vibration, direct sunlight and so on.
- Products should be storage under the airtight packaged condition.

单击下面可查看定价,库存,交付和生命周期等信息

>>Walsin Technology(华新科技)