

	RODUCT SPECIFICATION RODUCT: CERAMIC DISC CAPACITOR
	TYPE: 50V, 100V, 500V, 1KV, 2KV, TEMPERATURE COMPENSATING CAPACITOR
	CUSTOMER:
	DOC. NO.: POE-D01-00-E-20
	Ver.: 20 世版份本
	APPROVED BY CUSTOMER
	Sechnology Corport
DO	R: WALSIN TECHNOLOGY CORPORATION 566-1, KAO SHI ROAD, YANG-MEI TAO-YUAN, TAIWAN 1. PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD. NO.277,HONG MING ROAD, EASTERN SECTION, HUANGPU DISTRICT, GUANG ZHOU, CHINA
	MAKER : PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD. NO.277,HONG MING ROAD,EASTERN SECTION, HUANGPU DISTRICT ,GUANG ZHOU,CHINA

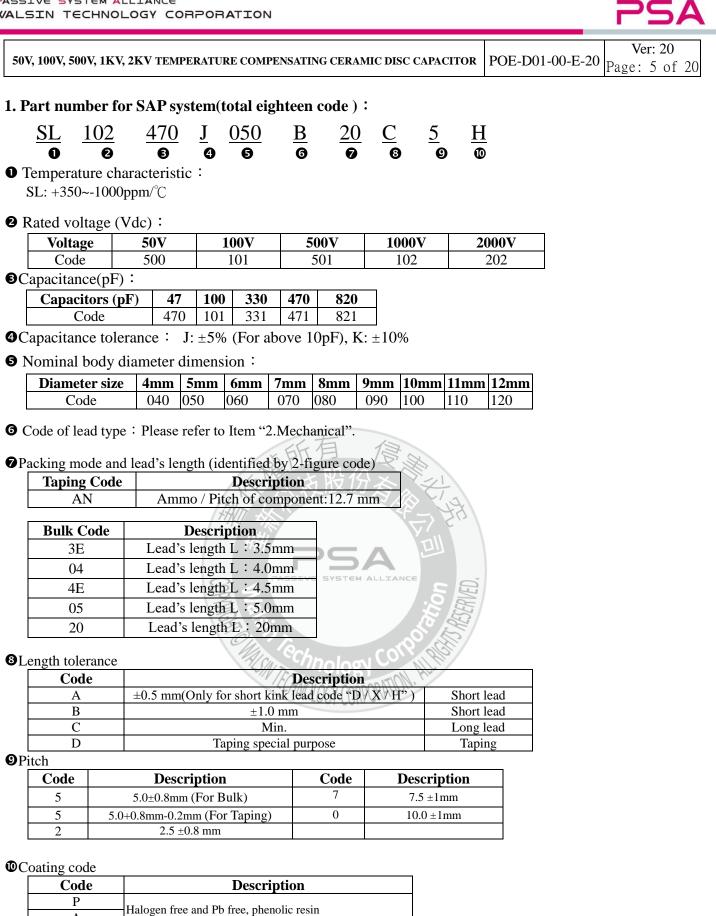
50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Page: 2 of 20

Record of change

Date	Version	Description									
2008.6.3	1	1. D08-00-E-14 (before) \rightarrow POE-D01-00-E-01 (1 st edition)									
2008.8.22	2	2. Revised diameter									
		Before	Now	Before	Now						
		CH5000R5X040* not available SL500181X060* SL500181X050*									
		CH1010R5X040* not available SL500241X070* SL500241X060*									
		CH501360X050*	CH501360X060*	SL500361X080*	SL500361X070*						
		CH501620X080*	CH501620X060*	SL500391X080*	SL500391X070*						
		CH501680X080*	CH501680X060*	SL101181X060*	SL101181X050*						
		CH501750X080*	CH501750X060*	SL101241X070*	SL101241X060*						
		CH501820X080*	CH501820X070*	SL101361X080*	SL101361X070*						
		CH501101X080*	CH501101X070*	SL101391X080*	SL101391X070*						
		CH102080X060*	CH102080X050*	SL102680X060*	SL102680X050*	6-7					
		CH102100X060*	CH102100X050*	SL102121X100*	SL102121X060*	5					
		CH102120X060*	CH102120X050*	SL102151X100*	SL102151X070*						
		CH102620X080*	CH102620X070*	SL102181X100*	SL102181X070*						
		CH102820X100*	CH102820X080*	SL102201X100*	SL102201X080*						
		X	古阳伤	SL102221X100*	SL102221X080*						
		 Complete lead code Add last SAP code " 		b free , epoxy resin							
2008.12.12	3	2. Page layout adjust	to 17 th codes of SAP ment. then the coating resin		ee Enoxy	5-9					
2009.8.19	4		re range change from	-25° C ~ $+85^{\circ}$ C to -	25° C ~ +125°C, ge from +85°C to +125°C	13 15					
2010.8.24	5	1. Change the diame			500V 62Pf&68Pf&75Pf. SL 1KV.	8 9					
2012/5/10	6	 Review the size Do Review the size Do from "100" to be " 	o for the item CH/100		" to be "080"; b be "070", CH/1000V/101	8 8					
2012/12/5	7	Add 8.6. Ambient Ten				18-19					
2013/5/6	8		diameter φ from 0.60			7,10					
			* 1		all be omitted." $45\pm5^{\circ}$ C , Solderability time	9 13					
2013/10/18	9	Review the packing s	-			11					
2015/8/31	10	-	of the use of epoxy rea			8-9					
			ts of the temperature			5,					
			on about"Old Part No		s 110&120) for P/N CH	6,7 8					
		50V&100V.		ameter annension i	s 110@120) 101 1/10 CH	8					
2015/9/23	11	4. Delete 82 Pf &10			and 120 Pf &150 Pf (Code						
		 5. Delete 56 Pf &68 6. Delete 4Pf~22Pf (ameter dimension is 0	70) for P/N CH 1KV. IPf~47Pf (Code of diameter	8 8					
		dimension is 070)	for P/N CH 2KV.			6-7					
2016/3/2	12	2. Review 8.6. Amb	 Review the Available lead code of Lead Configuration. Review 8.6. Ambient Temp of Allowable Voltage Graph (500Vdc to 2kVdc) 								

Copyright © by Walsin Technology Downloaded From Oneyac.com reserved.

Date	Version	Description						
		1. Revised diameter as below :	9					
		Before Now						
		SL202181J100* SL202181J080*						
		SL202201J100* SL202201J080*						
2016/5/3	13	SL202221J100* SL202221J080*						
		SL202241J100* SL202241J080*						
		SL202271J100* SL202271J080*						
		SL202301J120* SL202301J110*						
		SL202331J120* SL202331J110*						
2016/11/3	14	1. Delete "CH" series.	5,8,12~13					
2016/12/21	15	1. Revised the product diameter for SL 50V~500V	8					
2017/9/27	16	 Delete 8Pf~12Pf (Code of diameter dimension is 040) for P/N SL 50V&100V. Delete 8Pf~15Pf (Code of diameter dimension is 050) for P/N SL 500V. Delete 10Pf~12Pf (Code of diameter dimension is 050) for P/N SL 1KV. 	8					
2021/9/9	17	1. Delete Walsin & POE logo.	1					
2022/1/8	18	Add "Soldering Recommendation"						
2022/4/21	19	. Add 8.5.2 List of substances that affect the insulation strength of coating						
2023/6/15	20	1. The last code "B" is changed from "Epoxy Resin, Pb free" to "Halogen free and Pb free, epoxy resin".	5,8					



50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 4 of 20

Table of Contents

No.	Item	Page
1	Part number for SAP system	5
2	Mechanical	6~7
3	Capacitance value vs. Rate voltage, product diameter	8
4	Marking	8
5	Taping Format	9
6	Packing specification	10
7	Specification and test method	11~14
8	Cautions & notices	15~18
9	Soldering Recommendation	19
10	Drawing of internal structure and material list	20
	PASSIVE SYSTEM ALLIANCE	

Sin Technolog

Code	Description
Р	Halogen free and Pb free, phenolic resin
А	Halogen free and Fo free, phenolic reshi
В	Halogan free and Dh free anous resin
Н	raiogen nee and ro nee, epoxy lesin
A B H	Halogen free and Pb free , epoxy resin

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Page: 6 of 20

Ver: 20

2. Mechanical:

Available lead code: (unit: mm)

Available lead	SAP P/N (13-17) digits	Pitch (F)	Lead length (L)	Available rated voltage	Packing	Lead configuration
	B20C2	2.5 ± 0.8	20 MIN.	50V&100V		D max. T max.
-	B20C5	5.0 ± 0.8	20 MIN.			
	B20C6	6.4 ± 1.0	20 MIN.	50110 10011 50011	Bulk	
Lead style : B	B20C0	10 ± 1.0	20 MIN.	50V&100V, 500V, 1KV,2KV		
Straight long	B20C7	7.5 ± 1.0	20 MIN.	110,210		
lead	BAND5	5.0 +0.8-0.2	Taping Spec. (Ref.		Tap. Ammo	ĨŦĨ҉⊢┍╶╢ <mark>╷</mark>
	BAND2	2.5 ± 0.8	to page.10)	50V&100V		ød+ +
	L05B2	2.5 ± 0.8	5.0 ± 1.0	50V&100V		D max. T max.
	L05B5	5.0 ± 0.8	5.0 ± 1.0			
	L05B0	10 ± 1.0	5.0 ± 1.0			
Lead style : L	L05B6	6.4 ± 1.0	5.0 ± 1.0	-		()
Straight short	L05B7 L4EB5	$\begin{array}{c} 7.5 \pm 1.0 \\ 5.0 \pm 0.8 \end{array}$	5.0 ± 1.0 4.5 ± 1.0	50V&100V, 500V,	Bulk	
lead	L4EB5 L4EB7	3.0 ± 0.8 7.5 ± 1.0	4.5 ± 1.0 4.5 ± 1.0	1KV, 2KV		
	L4EB0	10 ± 1.0	4.5 ± 1.0			ød
	H3EA5	5.0 ± 0.8	3.5 ± 0.5	R. R.		
	H04A5	5.0 ± 0.8	4.0 ± 0.5		1	
	H4EB5	5.0 ± 0.8	4.5 ± 1.0	50V&100V, 500V,	Bulk	
	H05B5	5.0 ± 0.8	5.0 ± 1.0	1KV	FF.	
-	H20C5	5.0 ± 0.8	20 MIN.		212	D max. T max.
Lead style : H	HAND5	5.0 +0.8 -0.2	Taping SPEC. (Ref. to page.10)		Tap. Ammo	
Inside kink	H05B7 H05B0	7.5 ± 1.0 10 ± 1.0	5.0 ±1.0 5.0 ±1.0	TEM ALLIANCE		
lead	H20C0	10 ± 1.0 10 ± 1.0	20 MIN.	TEM ALLIANCE		
ieuu	H04A7	7.5 ± 1.0	4.0 ± 0.5	50V&100V, 500V,	Bulk	°FIF F − II T
	H04A0	10 ± 1.0	4.0 ± 0.5	1KV,2KV		ød+ + <u> </u> ∟
-	H3EA7	7.5 ± 1.0	3.5 ± 0.5			
-	H3EA0 H4EB7	10 ± 1.0 7.5 ± 1.0	3.5 ± 0.5 4.5 ± 1.0			
	H4EB7 H4EB0	7.3 ± 1.0 10 ± 1.0	4.5 ± 1.0 4.5 ± 1.0	OBY CON ALL		
	X3EA5	5.0±0.8	CHIVOLOGV	CORPORATION		
ŀ	X3EA7	7.5±1.0	3.5 ± 0.5	conton		D max. T max.
F	X3EA0	10±1.0				
11.(1	X04A5	5.0±0.8				
Lead style : X	X04A5	7.5±1.0	4.0 ± 0.5	50V&100V, 500V,	D.,11-	
Outside kink lead	X04A7 X04A0	-	T.U ± 0.J	1KV, 2KV	Bulk	
ieau		10±1.0				xem 0°
ŀ	X05B5	5.0±0.8				'N''''''''''''''''''''''''''''''''''''
Ļ	X05B7	7.5±1.0	5.0 ± 1.0			Ød+ + ød <u> </u> └
	X05B0	10±1.0				
	D04A5	5.0±1.0				D max. T max
Γ	D04A7	7.5±1.0	4.0 ± 0.5			
Lead style : D	D04A0	10±1.0	1			
Vertical kink	D3EA5	5.0±0.8		50V&100V, 500V,	Bulk	
short lead	D3EA7	7.5±1.0	3.5 ± 0.5	1KV, 2KV		
			5.5 ± 0.5			╠ _┍ ┍╶╢ ┍╶╢
	D3EA0	10±1.0	Tamin - ODDO	4		ø d+ + L ød
	DAND5	$5.0^{+0.8}$ -0.2	Taping SPEC. (Ref. to page.10)		Tap. Ammo	

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 7 of 20

Lead type	SAP P/N (13-17) digits	Lead length (L)	Available rated voltage	Packing	Lead configu	ration
	M05B5				D max.	T max.
	M05B7	5.0 ± 1.0	50V&100V, 500V, 1KV, 2KV			
	M05B0					
Lead style : M	M04B5					
Double outside	M04B7	4.0 ± 1.0		Bulk		۷ V
kink lead	M04B0					

ℜ Lead diameter φ= 0.55 +/-0.05mm

* Phenolic resin coating for 50V/500V/1KV product; Epoxy resin coating for 1KV or 2KV product.

※ e (Coating **extension** on leads):

For straight lead style: 1.5mmMax when the rated voltage is 50Vdc & 100Vdc;

2.0mmMax when the rated voltage is 500Vdc and 1KVdc;

3.0mmMax when the rated voltage is 2KVdc.

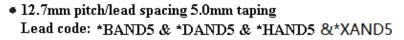
For kink lead style: not exceed the kink.

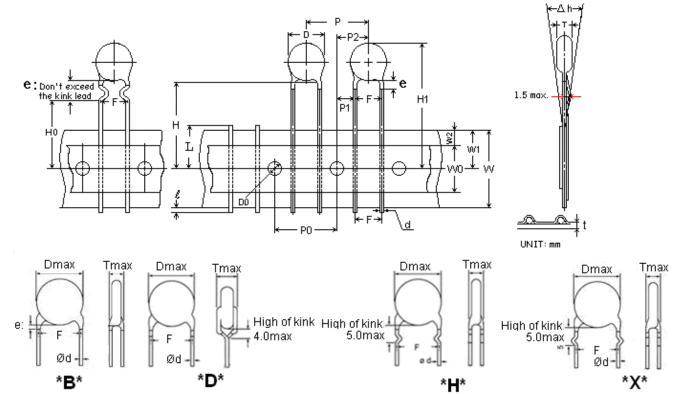
When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 8 of 20

3. Capacitance value vs. rated voltage, product diameter:

T.C										S	L								
Rate voltage			5	0V/100	v					500V				1	KV			2KV	
Dφ	040	050	060	070	080	090	100	050	060	070	080	100	050	060	070	080	060	070	080
D max. (mm)	5.0	6.0	7.0	8.0	9.0	10.0	11.0	6.0	7.0	8.0	9.0	11.0	6.0	7.0	8.0	9.0	7.5	8.5	9.5
T max.	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5
(mm) 10																			
10																			
15	150												150				150		
18	180							180					180				180		
20	200							200					200				200		
22	220							220					220				220		
24	240							240					240				240		
27	270							270					270				270		
30	300							300					300				300		
33	330							330					330				330		
36	360							360					360				360		
39	390							390					390				390		
47	470							470					470				470		
51	510							510					510				510		
56	560							560					560				560		
68	680							680					680				680		
75	750							750						750			750		
82	820							820						820			820		
100	101							101		-	1-			101				101	
120		121						FIL	121		12	· ~ .		121					121
150		151					X	2.1	151		12	20			151				151
180		181					$\sum \Lambda$	E.	トマ	181	×	\sim	11		181				181
200			201				NV.	$\left - \right\rangle$	511	201	D		-			201			201
220			221			HN.	$\mathbf{N}_{\mathbf{r}}$	\times	1	221			\mathcal{L}_{1}			221			221
240			241			1+1+1	7 🔊				241	<u>:</u> [77	7					
270				271							271		1						
300				301			1444	/			301								
330				331					n		331	4							
360				361								361							
390				391		\bigcirc		PASSI	VE SY	STEM	ALLIA	391		-					
470					471	S	5						J.						
500						501	5												
510						511						i i		C					
560						561								E					
680 750						C	681 751					8	R	1					
820							821	<u>- 90</u>	6		. 66		le la	r					
PACKING		1	TAP	ING or B	ULK		321	17	TAP	ING or B	ULK		1	TAPING	or BULF	ι	TA	PING or H	ULK
COATING						Phenol	ic resin						Pher	nolic resin	or Epoxy	Resin		Epoxy Re	sin

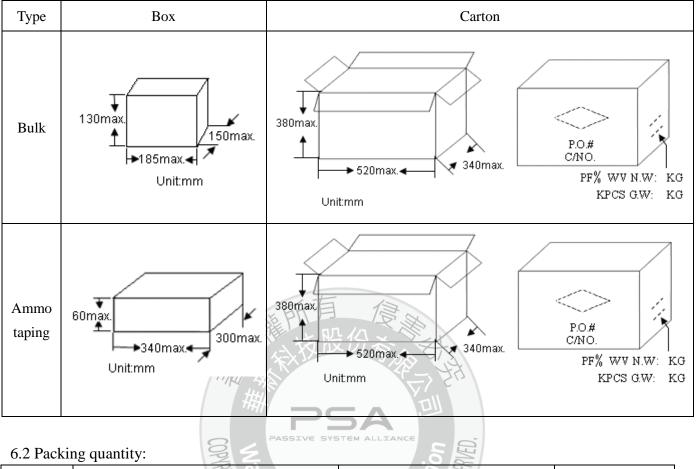

CORPUKATIO


l. Marking:		OLOGI CURPON
		SL
Marking Remarks		$ \begin{array}{c} 1) \\ 51J \\ KV \\ KV \\ (6) \\ (5) \end{array} $
(1). Temp. char.	SL: No markin	ıg.
(2). Rated capacitance	Identified by 3-2	Figure Code. Ex. 47pF→"47", 470pF→"471"
	50V&100V	Marked with code "" under the rated capacitance.
(3). Rated voltage	500V	No any marking under the rated capacitance.
	1000V&2000V	Marked with code: $1000V \rightarrow "1KV" \cdot 2000V \rightarrow "2KV"$
(4). Capacitance tolerance	J: ±5% (For abo	ove 10pF), K: ±10%
(5). Manufacturer's identification	Shall be marked	as "UK", but $D\Phi \leq 060$ shall be omitted.
(6). Halogen and Pb free		marking under the code "V" when the coating resin is Halogen free xy. (For the last code "H" and "B" of the SAP P/N)

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 9 of 20

5. Taping specifications:

* Lead spacing: $F=5.0^{+0.8}-0.2$ (mm)



Itom	Item S				Remarks	
Item	E O.	Symbol	Value	Tolerance	Remarks	
Body diameter	0,7	D	*	max.	See Section"3. Capacitance value vs. rated	
Body thickness	MA	SoT 1	*	max.	voltage, product diameter".	
Lead-wire diameter	T.SIA	d/nc	0.55	±0.05		
Pitch of component		(P	12.7	±1.0		
Feed hole pitch		///P0//	/ 12.7	±0.3	Cumulative pitch erroe:1.0mm/20 pitch	
Feed hole center to lead		PÍ	3.85	±0.7	To be measured at bottom of clinch	
Hole center to component center		P2	6.35	±1.3		
Lead-to-lead distance		F	5.0	+0.8, -0.2		
Component alignment, L-R		∆ h	0	±2.0		
Tape width		W	18.0	+1.0, -0.5		
Hole-down tape width		W0	8.0	min.		
Hole position		W1	9.0	+0.75, -0.5		
Hole-down tape position		W2	3.0	max.		
Height of component form tape	For straight lead type	Н	20.0	+1.0 - 0.5		
center	For kinked lead type	HO	16.0	±0.5		
Component height		H1	32.25	max.		
Lead-wire protrusion		1 D0	2.0	max.	Or the end of lead wire may be inside the tape.	
Food hole diameter			4.0	±0.2		
Total tape thickness			0.7	±0.2	Ground paper:0.5±0.1mm	
Length of sniped lead			11.0	max.		
Coating rundown on leads		e	Please refer to page 6 "e(Coating extension on leads)".			

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 10 of 20

6. Packing Baggage :

6.1 Packing size:

Packing Type	The code of 14th to15th in SAP P/N	MPQ (Kpcs/Box) Remark				
Toning	AN	ogy 2	Phenolic resin			
Taping	AN	CORPORATION 1.5	Epoxy resin			

Packing Type	Lead length	Size code of 10th to 12th in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box	Remark
		040~070	1	3	Phenolic resin
	Long lead	080~100	1	2	Phenolic resin
	$(L \ge 16mm)$	050~100	1	2	Epoxy resin
Bulk		110	0.5	1.5	
DUIK		040~060	1	6	
	Short lead	070~080	1	4	
	(L<16mm)	090~100	1	3	
		110	1	2	

Copyright © by Walsin Technology Downloaded From Oneyac.com reserved.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 11 of 20

7. Specification and test method:

7.1 SCOPE: THIS SPECIFICATION APPLIES TO TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR.

7.2 TEST CONDITIONS :

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE $25^{\circ}C \pm 2^{\circ}C$, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

- 7.3 HANDLE PROCEDURE : TO AVOID UNEXPECT TESTING RESULTS FROM OCCURRING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.
- 7.4 TEST ITEMS :

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE			
APPEARANCE STRUCTURE SIZE	NO ABNORMALITIES	AS SECTION 3.			
MARKING	横手	AS STATED IN SECTION 4			
	BETWEEN TERMINALS: NO ABNORMALITIES	 A. BELOW 1KV: 300% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. B. 1KV & ABOVE: 200% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. 			
WITHSTAND VOLTAGE	BETWEEN TERMINAL AND ENCLOSURE : NO ABNORMALITIES	SWALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY. THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS. (APPLY 1.3KV DC OF RATED VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR 1~5 SEC)			
INSULATION RESISTANCE	10000 MΩ MIN	INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER APPLIED VOLTAGE (RATED) RATED VOLTAGE: 50V=50V, 100V=100V, 500V & ABOVE=500V			
CAPACITANCE	TOLERANCE : J : ±5% K : ±10%	TESTING FREQUENCY : 1 MHZ ± 20% TESTING VOLTAGE : 1.0 VRMS			
OPERATING TEMPERATURE RANGE	$-25^{\circ}\text{C} \sim +125^{\circ}\text{C}$				
Q FACTOR	$\begin{array}{c c} 30 \ PF \\ \& \ ABOVE \\ \hline BELOW \\ 30PF \\ \end{array} Q \geq 1000 \\ Q \geq 400 + 20 \times C \\ \hline \end{array}$	AS ABOVE STIPULATION OF CAPACITANCE			

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 12 of 20

ITEM	POST-TEST REQUIREMENTS		TEST	ING	PROC	CEDURI	E	
		ACCORDING TO STEP 1 TO 5 IN ORDER, MEASURED CAPACITANCE WHEN TEMPERATURE REACH BALANCE AND TEMPERATURE COEFFICIENT SHALL BE CALCULATED ON THE FOLLOWING FORMULA : PPM/°C =(C2-C1)×10E6/C1(T2-T1)						
	TEMPERATURE COEFFICIENT : SL :+350~-1000 ppm/°C	Step	1	2	3	4	5	
	FOR (+20°C ~+85°C)	Temp. (°C)	25±2	20±3	25±2	85±2	25±2	-
TEMPERATURE CHARACTERISTIC		NOTE : C1 = CAPACITANCE AS STEP 3 C2 = CAPACITANCE AS STEP 2 OR 4 T1 = TEMPERATURE AS STEP 3 T2 = TEMPERATURE AS STEP 2 OR 4						
	CAPACITANCE TOLERANCE : WITHIN ±0.2% OR ±0.05PF, WHICHEVER IS LARGE	ACCORDING TO ABOVE STEP 1,3 & 5, CAPACITANCE TOLERANCE SHALL BE CALCULATED ON THE FOLLOWING FORMULA : $\Delta C\% = (G - S)/C1$ NOTE : G = GREATEST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 S = LEAST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 C1 = CAPACITANCE AS STEP 3						
TERMINAL STRENGTH	TENSIBLE STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 M/M. LOADING WEIGHT 0.5 KGS, FOR 10±1 SECONDS. WIRE DIA.0.6 M/M. LOADING WEIGHT 1.0 KGS, FOR 10±1 SECONDS.						
SIKENGIN	BENDING STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 mm, LOADING WEIGHT 0.25 KGS. WIRE DIA.0.6 mm, LOADING WEIGHT 0.5 KGS. (BENDING BACK AND FORTH 90 DEGREE TWICE)						
	APPEARANCE : School NO ABNORMALITIES	 LEAD WIRE OR TERMINALS SHALL BE IMMERSED UP TO 2.0 M/M FORM BODY. (A) BODY DIA. ≤ 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE: 260(+5/-0)°C FOR 3.0±0.5 				DER OF		
SOLDERING	CAP.CHANGE : WITHIN ±2.5% OR ±0.25PF, WHICHEVER IS LARGE.	SECONDS. (B) BODY DIA. > 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE 260(+5/-0)°C FOR 5~10 SECONDS.						
HEAT RESISTANCE	WITHSTAND VOLTAGE : (BETWEEN TERMINALS)	THEN LEAVE AT STANDARD TEST CONDITIONS FOR 1~2 HOURS, THEN MEASURED.				FOR		
	NO ABNORMALITIES	*WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE : 50W MAX.						
		SOLDERING TIME : 3.5 SEC. MAX.						
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 75% OF THE CIRCUMFERENTIAL DIRECTION.	TO COMPLY WITH JIS-C-5102 8.4 SOLDERTHETEMPERATURE245±5°C AND DIPPING TIME 5±0.5SECONDS FLUX : WEIGHT RATIO OF ROSIN 25%						

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20

1.00 ± 20	ver: 20			
01-00-Е-20	Page: 13 of 20			

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
HUMIDITY CHARACTERISTIC	APPEARANCE : NO ABNORMALITIES CAP. CHANGE : SL : WITHIN $\pm 5\%$ OR $\pm 0.5PF$, WHICHEVER IS LARGE Q FACTOR : SL : LESS THAN 10PF ==> Q $\ge 200 + 10 \times C$ MORE THAN 10PF AND LESS THAN 30PF => Q $\ge 275 + 5 \times C / 2$ MORE THAN 30PF => Q ≥ 350	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40 ± 2°C FOR 500(+24/-0) HOURS, THEN DRIED FOR 1 \sim 2 HOURS AND MEASURED.
HUMIDITY LOADING	INSULATION RESISTANCE : 1000M Ω MIN. APPEARANCE : NO ABNORMALITIES CAP.CHANGE : SL : WITHIN ±7.5% OR ±0.75PF, WHICHEVER IS LARGE Q FACTOR : SL : LESS THAN 30PF => Q \geq 100 + 10 × C / 3	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40±2°C FOR 500(+24/-0) HOURS WITH RATED VOLTAGE APPLIED (LESS THAN 50mA), THAN DRIED FOR 1 \sim 2 HOURS AND MEASURED.
HIGH TEMPERATURE LOADING	MORE THAN 30PF => $Q \ge 200$ INSULATION RESISTANCE : 500M Ω MIN. APPEARANCE : NO ABNORMALITIES CAP. CHANGE : SL : WITHIN ±3% OR ±0.3PF, WHICHEVER IS LARGE Q FACTOR : SL : LESS THAN 10PF => $Q \ge 200 + 10 \times C$ MORE THAN 10PF & LESS THAN 30PF => $Q \ge 275 + 5 \times C / 2$ MORE THAN 30PF => $Q \ge 350$ INSULATION RESISTANCE : 1000M Ω MIN.	CAPACITORS SHALL BE SUBJECTED TO A TEST OF: (A) BELOW 1KV: 200% RATED VOLTAGE WITH 50mA MAX. (B) 1KV & ABOVE: 150% RATED VOLTAGE WITH 50mA MAX. FOR 1000(+48/-0) HOURS AT 125°C ± 2°C AND THEN DRIED FOR 1~2 HOURS AND MEASURED.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 14 of 20

POST-TEST REQUIREMENTS	TESTING PROCEDURE
APPEARANCE : NO ABNORMALITIES	CAPACITORS SHALL BE SUBJECTED TO: $-25\pm3^{\circ}C(30\pm3\min) \rightarrow 25^{\circ}C(3\min) \rightarrow 125\pm3^{\circ}C(30\pm3\min) \rightarrow 25^{\circ}C(30\pm3\min) \rightarrow 125\pm3^{\circ}C(30\pm3\min) $
CAP. CHANGE :	25°C (3min) FOR 5 CYCLE.
WHICHEVER IS LARGE	
D.F. C < $30pF: Q \ge 275 + (5/2)C$	
$C \ge 30 pF : Q \ge 350$	
INSULATION RESISTANCE : 1000 M Ω MIN.	
	APPEARANCE : NO ABNORMALITIES CAP. CHANGE : WITHIN $\pm 5\%$ OR ± 0.5 PF, WHICHEVER IS LARGE D.F. C < 30 pF : Q $\geq 275+(5/2)$ C C ≥ 30 pF : Q ≥ 350 INSULATION RESISTANCE :

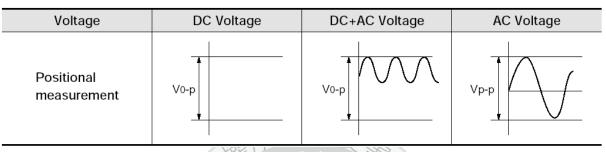
50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Page: 15 of 20

/er 20

8. Cautions & notices:

※Application: DC or Low frequency High Voltage circuits.

As coupling and decoupling capacitors for such application where higher losses and a reduced capacitance stability are required.


8.1. Caution (Rating)

I. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the

applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

II. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

- 8.2. Caution (Storage and operating condition)
- I. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.3. Caution (Soldering and Mounting)

I. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage : 50W max.

Soldering time : 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND

CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.4. Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND

CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRDUCT IS USED.

8.5. Notice

8.5.1. Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

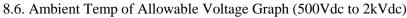
Rinsing time : 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

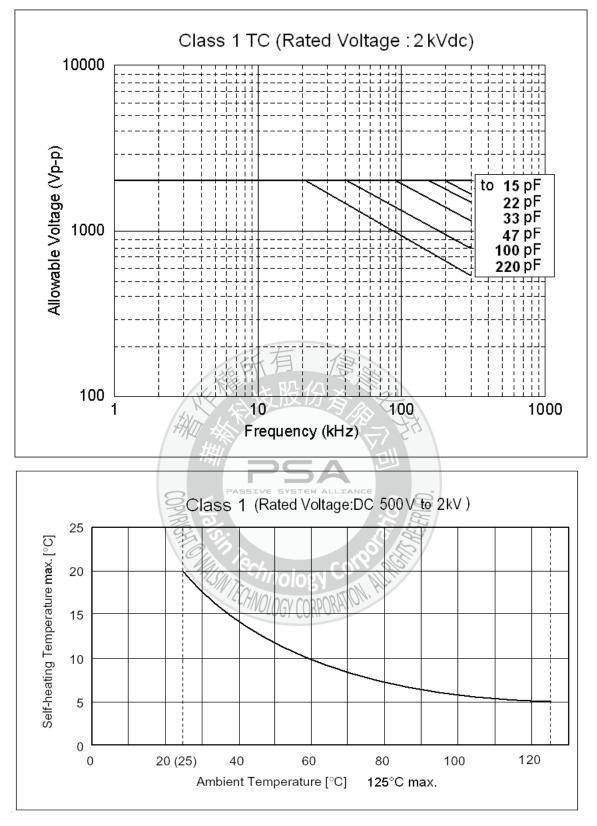
8.5.2 List of substances that affect the insulation strength of coating :

Resin solvent


Category	Model				
Ketone	Acetone	Butanone	Cyclohexanone		
Esters	Ethyl acetate	Dibutyl phthalate			
Chlorinated hydrocarbons	Dichloromethane	A A A A A A A A A A A A A A A A A A A			
Resin thinner	CINVOLOG	YCORPUKATIO			

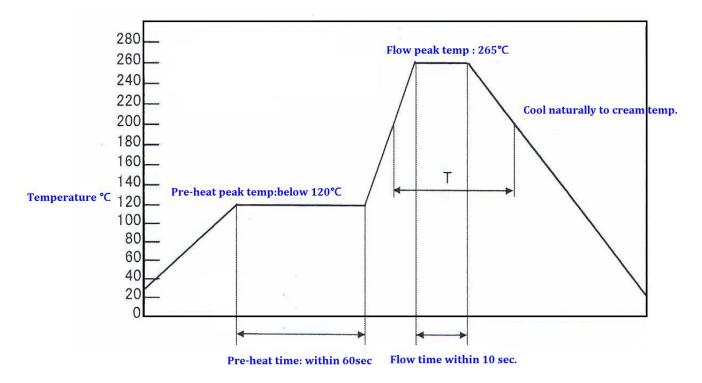
Category		Model		
		HK-66 (Alkyl glycidyl ether)		
	Simple function group	501 (Butyl glycidyl ether)		
		690 (Phenyl Glycidyl Ether)		
		AGE (C12-14Aliphatic Polyalcohol Glycidyl Ether)		
		692 (Benzyl Glycidyl Ether)		
Reactive diluentactivated thinner	Two functional groups	D-678 (Neopentyl glycol diglycidyl ether)		
		622 (1,4-Butanediol diglycidyl ether)		
		669 (Ethylene glycol diglycidyl ether)		
		X-632 (Polypropylene glycol diglycidyl ether)		
		X-652 (1,6-Hexadiol diglycidyl ether)		
		D-691Epoxypropane o-methylphenyl ether		
		Anhydrous ethanol	Toluene	
		Ethyl acetate	Dimethylbenzene	
Non-activated th	inner	Dimethyl formamide	Butyl acetate	
		Acetone	Styrene	
		Polyol	Benzyl alcohol	

Note: The above substances should not contact the coating of the product body, otherwise it will affect the insulation strength of the product


Copyright © by Walsin Technology Downloaded From Onevac.com reserved. 50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Page: 17 of 20

Class 1 TC Rated Voltage: DC 500V 10000 Allowable Voltage (Vp-p) 1000 ÷÷ 500 to **100**pF 220pF 390pF 100 1 10 100 1000 Frequency (kHz) Class 1 TC (Rated Voltage : 1kVdc) 10000 Allowable Voltage (Vp-p) 1000 to 62 pF 100 pF 220 pF 100 10 1000 1 100 Frequency (kHz)

Copyright © by Walsin Technology Downloaded From Oneyac.com reserved.



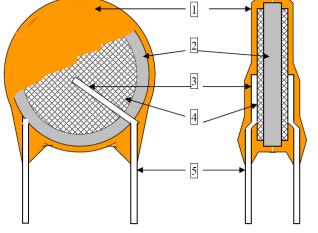
The ambient temperature and the surface temperature of capacitor must be 125° C or lower. (Including self-heating.)

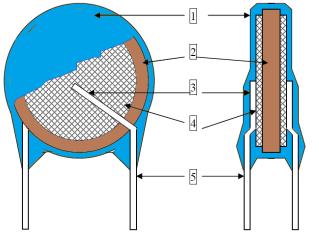
9. Soldering Recommendation:

9.1 Wave Soldering Profile:

- Temperature conditions of the flow is recommended as shown in the chart
- Must implement the pre-heat
- Maximum peak flow temperature is recommended 265°C
- Time "T" implement in the chart recommended within 20 sec. it temperature exceed 200°C
- Take care with the flow solder not to touch the capacitor body directly at mounting

Chart to show flow recommended temp


9.2 Recommended Reworking Conditions with Soldering Iron :


- Temperature of iron-tip: 400 degrees C. max.
- Soldering iron wattage: 50W max.
- Soldering time: 3.5 sec. max.
- Distance from coating body: 2 mm (min.)

9.3 Reflow-Soldering : Lead Ceramic Cap. should not be soldered by reflow-soldering.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-20 Ver: 20 Page: 20 of 20

10. Drawing of internal structure and material list:

(epoxy resin)

		EF	有目	
NO. 部位 Part name		材質	構成部份	供應商
		Material	NX 17 Component	Vendor
1	Inculation Coating	Phenolic resin	Phenolic resin, Filler, Pigment	Namics
1	Insulation Coating	Epoxy resin	Epoxy resin, SiO2, TiO2	Kai Hua
			SA	Hua Xing
2 Dielectric Elemen	Dielectric Element	Ceramic	SrCO3, TiO2, Bi2O3, CaCO3	Wang Feng
		E E		Fenghua
3 Solder		Tin-silver	S = 07 5 A = 2 5	Huajun
		rin-suver ech	Sn97.5-Ag2.5	Haili
4 Electrodes	Electrodes	ECHNO	Silver, Glass frit	Daejoo
	Electrodes	Ag	our correstiver, Glass Int	Xinguang
_	Leads wire	Tinned copper	Substrate metal:Fe&Cu	Hengtai
5		clad steel wire	Surface plating:Sn 100%	Wuhu Taililai

>>Walsin Technology(华新科技)