

POE-D21-01-E-08

Ver: 08

Page: 1/20

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR SAFETY RECOGNIZED

TYPE: AC SERIES (Small Size) **CUSTOMER:** DOC. NO.: POE-D21-01-E-08

符合 RoHS&HF 及其他環保要求;金屬電鍍層不含六價鉻 RoHS &HF& Requirements of Environmental; Prohibit containing Cr+6 in the plating with metal

APPROVED BY CUSTOMER

VI	ENDOR:
	WALSIN TECHNOLOGY CORPORATION
	566-1, KAO SHI ROAD,YANG-MEI
	TAO-YUAN, TAIWAN
	PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.
	NO.277,HONG MING ROAD,EASTERN SECTION,
	HUANGPU DISTRICT ,GUANG ZHOU,CHINA
	DONGGUAN WALSIN TECHNOLOGY ELECTRONICS CO., LTD.
	NO.638, MEI JING WEST ROAD, XINIUPO, ADMINISTRATIVE ZONE, DALANGTOWN, DONGGUAN CITY,
	GUANGDONG PROVINCE
M	ANUFACTURE SITE:
\mathbf{V}	PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.
	NO.277,HONG MING ROAD,EASTERN SECTION,
	HIJANGPH DISTRICT GHANG THOU CHINA

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 00	** 00	D 0/00
AC SERIES (Small Size)	POE-D21-01-E-08	Ver : 08	Page: 2/ 20

Record of change

Date	Version	Description	page
2017/6/9	00	1. First edition.	All
2019/1/18	01	1. Revised standard NO. of VDE, SEV, SEMKO, FIMKO, NEMKO and ENEC.	9
2019/3/12	02	1. Add "0AC" code for Y2:250V~ marking type.	4,8~9
2019/4/24 03 1. "Protrusion length": "2.0max (Or the end of lead wire may be inside the tape.)" revised to "+0.5to-1.0 (Or the end of lead wire may be inside the tape.)"			7
2019/8/9	04	Delete the lead style "N" (Vertical kink lead)	5,7
2019/12/11	05	 Review the Available lead code of Lead Configuration Add "8.3 Label samples" 	5 14
2021/9/9	06	1. Delete Walsin & POE logo.	1
2022/4/21	07	 Add Applied voltage in 9.3 Test condition for withstanding voltage. Add 10.2 List of substances that affect the insulation strength of coating 	15~16 18
2023/5/26	08	Revised recognized No. of SEMKO and FIMKO.	9

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED, POE-D21-01-E-08 Ver : 08 Page: 3/20 AC SERIES (Small Size)

Table of Contents

No.	Item	Page
1	Part number for SAP system	4
2	Mechanical	5
3	Part numbering/T.C/Capacitance/ Tolerance/Diameter	6
4	Taping Format	7
5	Marking	8
6	Scope	9
7	Specification and test method	10~13
8	Packing specification	14
9	Caution	15~17
10	Notice	17~18
11	Note	18
12	Soldering Recommendation	19
13	Drawing of Internal Structure and material list	20

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED, POE-D21-01-E-08 Ver: 08 Page: 4/20 AC SERIES (Small Size)

1. Part number for SAP system

(Ex.)<u>YU</u> \mathbf{AC} (2)-2(10)**(1)** (2)-1**(6) (9)** (11)**(3)**

(1) Temperature characteristic (identified code)

CODE	Temperature characteristic	Cap. Change		
SL	SL	-1000~+350ppm/°C (+20°C~+85°C)		
YP	B (Y5P)	±10%		
YU	E (Y5U)	-55% to +20%		

(2)-1 Rated voltage(identified by 1-figure code) $: 0 = X1:400V \sim /Y2:250V \sim$, $1=X1:440V \sim /Y2:300V \sim$

(2)-2 Type(identified by 2-figure code): AC

(3) Capacitance (identified by 3-figure code) : ex.221=220pF

(4) Capacitance tolerance (identified by code) : J:±5%,K:±10%,M:±20%

(5) Nominal body diameter dimension (Refer to "3. Part numbering/T.C/Capacitance/ Tolerance/Diameter")

(6) Internal code: 0--Normal, other code--Special control

(7) Lead Style: Refer to "2. Mechanical".

(8) Packing mode and lead length (identified by 2-figure code): Refer to "2. Mechanical" & "4.Taping Format"

1	E . C .	AXZIVI LIGITATI		
ı	Taping Code	Description		
	AF	Ammo box and product pitch: 15.0 mm		
	AM	Ammo box and product pitch: 25.4 mm		

Bulk Code	Description		
03	Lead length: 3.0mm PASSIVE SYSTEM ALL		
3E	Lead length: 3.5mm		
04	Lead length : 4.0mm		
20	Lead length: 20mm		

(9) Tolerance of lead length

	24/0/			
Code	Descriptio	Description		
A	±0.5 mm	Short lead		
В	±1.0 mm	Short lead		
С	Min.	Long lead		
D	Taping special purpose	Taping		

(10) Lead space

Code	Description	
7	7.5±1.0 mm	
M	7.5±0.5 mm	
0	10±1.0 mm	
A	10±0.5 mm	

(11) Epoxy resin code

Code	Description
T	Halogen and Pb free, epoxy resin, for Cu electrode

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 00	** 00	D 5/20
AC SERIES (Small Size)	POE-D21-01-E-08	ver : 08	Page: 5/20

2. Mechanical

Encapsulation: Epoxy resin, flammability UL94 V-0

Available lead code(unit: mm)

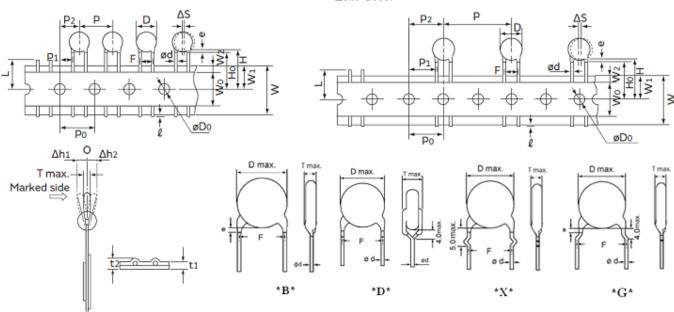
Available lead code	(unit: mm)		_	1	
Lead type	SAP P/N (13-17)digits	Lead space (F)	Lead Length (L)	Packing	Lead Configuration
	L03B7	7.5 ± 1.0	3.0 ± 1.0		D max. T max.
	L4EB7	7.5 ± 1.0	4.5 ± 1.0		
	L05B7	7.5 ± 1.0	5.0 ± 1.0		
	L03B0	10 ± 1.0	3.0 ± 1.0	D 11	
Lead style: L or B	L4EB0	10 ± 1.0	4.5 ± 1.0	Bulk	For
, and the second	L05B0	10 ± 1.0	5.0± 1.0		\
Straight lead	L20C7	7.5 ±1.0	20 min.		
	L20C0	10 ± 1.0	20 min.		
	BAFD7				For
	BAMD7	Refer to "4. T	Taping format"	Tap. Ammo	L<20mm
	BAMD0	receive ii i	aping format	Tup. 7 minio	[]
	G03B7	7.5 ± 1.0	3.0 ± 1.0		
	G4EB7	7.5 ± 1.0 7.5 ± 1.0	4.5 ± 1.0	1	D max. T max.
	G05B7	7.5 ± 1.0	5.0 ± 1.0	1	
	G03B0	10 ± 1.0	3.0 ± 1.0	1	
	G4EB0	10 ± 1.0	4.5 ± 1.0	Bulk	
Lead style: G	G05B0	10 ± 1.0	5.0± 1.0		
Lead style . G	G20C7	7.5 ±1.0	20 min.		, λ ⟨, ≼
Straight lead	G20C0	10 ± 1.0	20 min.		· · · · · · · · · · · · · · · · · · ·
28	GAFD7	超 門	1 夏	žb)	, the state of the
	GAMD7	Refer to "4. T	Taping format"	Tap. Ammo	
	GAMD0	XXXX		144	[] ø α+[]+ [] <u> </u>
	D03A7	7.5 ± 1.0	3.0 ± 0.5		
	D3EA7	7.5 ± 1.0	3.5 ± 0.5	711	D max. T max,
	D04A7	7.5 ± 1.0	4.0 ± 0.5		
	D03A0	10 ± 1.0	3.0 ± 0.5	Bulk	
	D3EA0	10±1.0 ∨∈	575T3.5 ± 0.5 ANC		
Lead style: D	D04A0 D20C7	10 ± 1.0	4.0 ± 0.5 20 min.	5 🗏	
	D20C7	7.5 ± 1.0 10 ± 1.0	20 min.		(× ~) 1 ×
Vertical kink lead	DAFD7	10 ± 1.0	20 11111.	6 3	in in its contract of the cont
	DAMD7	2, 1 x		0 (5)	<u> </u>
	DAMD0	Refer to "4. T	Caping format"	Tap. Ammo	Ø d - L
		14/1/1010	ICY CODDORALIUN	,	
	X03A7	7.5 ± 1.0	3.0 ± 0.5		D max. T max.
	X3EA7	7.5 ± 1.0	3.5 ± 0.5	1	
	X04A7	7.5 ± 1.0	4.0 ± 0.5		
	X05B7	7.5 ± 1.0	5.0 ± 1.0	Bulk	
	X03A0	10 ± 1.0	3.0 ± 0.5	1	
Lead style: X	X3EA0	10 ± 1.0	3.5 ± 0.5		\ /
	X04A0 X05B0	10 ± 1.0	4.0 ± 0.5	1	\ _\
Outside kink lead		10 ± 1.0	5.0 ± 1.0		k) l
	XAFD7				S
	XAMD7	Refer to "4. T	Taping format"	Tap. Ammo	"T F →
	XAMD0				

^{*} Lead diameter Φd: 0.55+0.1/-0.05mm

^{*} e (Coating **extension** on leads): 3.0mmMax for straight lead style; Not exceed the kink for kink lead.

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 00	** 00	D (/20
AC SERIES (Small Size)	POE-D21-01-E-08	ver : 08	Page: 6/20

3. Part numbering/T.C/Capacitance/ Tolerance/Diameter:


					Dime	ensions (ı	unit: mm)	
SAP Part. No.	T.C.	Capacitance	Tolerance	D (max)	T (max)	Bulk type	F Taping type	φd
SL*AC***J060*T		10,12,15,18,20,22, 24,27,30,33, 36, 39,47,50,51(pF)	±5%	7.0		71	J1	
SL*AC***J070*T	SL	56,62, 68,75(pF)	±5%	8.0				
SL*AC820J080*T		82pF	±5%	9.0				
SL*AC101J090*T		100pF	±5%	10.0				
YP*AC101K050*T		100 pF	±10%	6.0				
YP*AC151K050*T		150 pF	±10%	6.0				
YP*AC221K060*T		220 pF	±10%	7.0		7.5±1, 10±1	7.5±1 (AFD7) (AMD7) or 10±1 (AMD0)	0.55 +0.1/-0.05
YP*AC331K050*T		330 pF	±10%	6.0	4.5			
YP*AC471K060*T	Y5P	470 pF	±10%	7.0				
YP*AC561K060*T		560pF	±10%	7.0				
YP*AC681K060*T		680 pF	= ±10%	7.0				
YP*AC821K070*T		820 pF	±10%	8.0				
YP*AC102K070*T		1000 pF	±10%	8.0	15			
YU*AC102M050*T		1000 pF	±20%	6.0				
YU*AC152M060*T		1500 pF	±20%	7.0				
YU*AC222M070*T	Y5U	2200 pFassive	svs±20%LLIA	NC€8.0	9			
YU*AC332M090*T		3300 pF	±20%	10.0				
YU*AC392M100*T		3900 pF	±20%	11.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
YU*AC472M100*T		4700 pF	±20%	11.0				

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED, POE-D21-01-E-08 Ver: 08 Page: 7/20 AC SERIES (Small Size)

4. Taping Format

- 15 mm pitch/lead spacing 7.5mm taping Lead Code: *BAFD7 & *DAFD7 & *XAFD7 & *GAFD7
- 25.4mm pitch/lead spacing 7.5mm & 10.0mm taping Lead Code: *BAMD* & *DAMD* & *XAMD* & *GAMD*

POE Part Number	人样	*BAFD7/*DAFD7/ /*GAFD7/*XAFD7	*BAMD7/*DAMD7/ /*GAMD7/*XAMD7	*BAMD0/*DAMD0/ /*GAMD0/*XAMD0	
Item / Av	Symbol	Dimensions (mm)	Dimensions (mm)	Dimensions (mm)	
Pitch of component	P	15.0±1	25.4±2	25.4±2	
Pitch of sprocket	P0	15.0±0.3	12.7±0.3	12.7±0.3	
Lead spacing	F	7.5±1.0	7.5±1.0	10.0±1.0	
Length from hole center to component center	₽2sive	sysтем 7.5±1.5ce	12.7±1.5	12.7±1.5	
Length from hole center to lead	P1	3.75±1.0	8.95±1.0	7.7±1.5	
Body diameter	D	See the "3. Part numb	pering/T.C/Capacitance/ T	Colerance/Diameter"	
Deviation along tape, left or right	ΔS		0±2.0		
Carrier tape width	W.Ch	COLA COLA	18.0 +1/-0.5		
Position of sprocket hole	W1,	01081	9.0±0.5		
Lead distance between the kink and center of sprocket hole	H0	OGY CORPORA 18.0+2.0/-0)(For: *D* & *X* & *G*	lead type)	
Lead distance between the bottom of body and the center of sprocket hole	Н	20.0+1.5/-1.0 (only for straight lead *B* style)			
Length from the terminal of the lead wire to the edge of carrier tape	ℓ	+0.5 to -1.0 (Or the end of lead wire may be inside the hole-down tape.)			
Diameter of sprocket hole	D0	4.0±0.2			
Lead diameter	φd	0.55+0.1/-0.05			
Total tape thickness	t1	0.6±0.3			
Total thickness, tape and lead wire	t2	1.5 max.			
Deviation across tape	Δ h1/Δ h2		2.0 max.		
Portion to cut in case of defect	L		11.0 max.		
Hole-down tape width	W0	8.0 min			
Hole-down tape distortion	W2	1.5±1.5			
Coating extension on leads	e	3.0 max for straight lead style; Not exceed the kink leads for kink lead			
Body thickness	T	See the "3. Part numb	pering/T.C/Capacitance/ T	Colerance/Diameter"	

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOT DOL 04 T 05	** 05	D 0/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 8/ 20

5.Marking:

5.Marking:					
1.Type Designation	AC				
2.Nominal Capacitance	Identified by 3-Figure Code. Ex. 47pF→"47", 470pF→"471"				
3.Capacitance Tolerance	J:±5%,K:±10%,M:±20%				
4.Company Name Code(Trade mark)	IK				
5.Class code & Voltage	X1: 400V~ / Y2: 250V~ X1: 440V~ / Y2: 300V~				
6. Products ID Abbreviation ex.					
	Manufacture year: ←2 C 6 1234 → Last 4 digits of lot no. 0:2020				
	Marking ex.				
	Two sides marking				
* Marking by the laser.	X1:400V~ Y2:250V~ 2C61234 X1:400V~ Y2:300V~ 2C61234 X1:440V~ Y2:300V~ 2C61234				
e :	is in added and and the last ne				
"• ": Individual specification code,	it is added under the lot no.				

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOT DOL 04 T 05	** 05	D 0/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 9/ 20

6. Scope

THIS SPECIFICATION APPLIES TO CERAMIC INSULATED CAPACITORS DISK TYPE USED IN ELECTRONIC EQUIPMENT.

- 1. VDE/UL/CSA recognized capacitor for Antenna coupling and AC line-by-pass.X1, Y2 Capacitor based on IEC 60384-14 "UL, CSA recognized for across-the-line, line-by-pass" and antenna-isolation.
- Approval Standard and Recognized No.

Safety Standard	Standard No.	Subclass	w.v.	Recognized No.
UL	ANSI/UL 60384-14:2013	X1	400VAC or 440VAC	E146544
UL	ANSI/UL 00364-14.2013	Y2	250VAC or 300VAC	E140344
CSA	CAN/CSA E60384-14:2009	X1	400VAC or 440VAC	2347969
CSA	CAN/CSA E00384-14:2009	Y2	250VAC or 300VAC	2347909
VDE	EN 60384-14:2013/A1:2016 IEC 6.384-14:2013	X1	400VAC or 440VAC	40001829
(ENEC)	IEC 6.384-14:2013/AMD1:2016	Y2	250VAC or 300VAC	40001829
SEV	EN 60384-14:2013 + A1:16	EX1 1	400VAC or 440VAC	21.0555
DL V	EN 00304 14.2013 1 A1.10	Y2/1	250VAC or 300VAC	21.0333
SEMKO	EN 60384-14:2013+A1	LDX1/1	400VAC or 440VAC	SE-S-1811994R2
DLMIKO	EIV 00304-14.2013/141	Y2	250VAC or 300VAC	5L-5-1011774K2
FIMKO	EN 60384-14:2013 + A1:16	X1	400VAC or 440VAC	FI/41696
THVIKO	LIV 00304-14.2013 + A1.10	Y2 /	250VAC or 300VAC	11/410/0
NEMKO	EN 60384-14:2013;A1 PASSIV	X1	400VAC or 440VAC	P18222947
NEWIKO	LIN 00304-14.2013,A1	Y2	250VAC or 300VAC	F 10222947
ENEC	EN 60384-14:2013/ A1:2016,	X1	400VAC or 440VAC	ENEC-01962-A1
(Demko)	EN 60384-14:2013	Y2	250VAC or 300VAC	ENEC-01902-A1
DEMKO	EN 60384-14:2013/A1;2016	X1	400VAC or 440VAC	D-07617
DEMIKO	EN 60384-14:2013//	70 Y2	250VAC or 300VAC	D-0/01/
CQC	GB/T6346.14-2015		0VAC /Y2:250VAC	CQC08001026519
	IEC60384-14:2013	X1: 42	10VAC /Y2:300VAC	CQC15001121984
	VC(0294 1/2015 00) .	X1	400VAC	SU03065-14004A
KTL	KC60384-1(2015-09); KC60384-14(2015-09)	X1	440VAC	SU03065-14001A
KIL	11000001-11(2015-07)	Y2	250VAC	SU03065-14002A
	IEC 60384-14(ed.3)	Y2	300VAC	SU03065-14003A

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 05		D 10/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 10/20

7. Specification and test method

7.1 Operating Temperature Range: -40 to +125°C

7.2 Test condition:

Test and measurement shall be made at the standard condition. (temperature 15~35 °C, relative humidity 45~75% and atmospheric pressure 860~1060hpa). Unless otherwise specified herein.

If doubt occurred on the value of measurement, and measurement was requested by customer capacitors shall be measured at the reference condition. (temperature $20\pm2^{\circ}\text{C}$ or $25\pm2^{\circ}\text{C}$, relative humidity $60\sim70\%$ and atmospheric pressure 860~1060hpa.)

7.3 Performance:

No	Item			Specification	Testing Method						
1	Appearance and dimensions		No marke	d defect on appearance	The capacito	r should l	be inspe	cted by n	aked eye	s for visib	ole evidence of
			form and	dimensions.	defect.						
			Please ref	er to [Part number list].	Dimensions should be measured with s		lide calipers.				
2	Marking		To be eas	ily legible.	The capacito	r should l	be inspe	cted by n	aked eye	s.	
3	Dielectric Strength	Dielectric Retween No failure.		The capacitor should not be damaged when AC2600V(r.m.s.) <50/60Hz> is applied between the lead wires for 60 s. (Charge/Discharge current ≤ 50mA.)				n.s.) <50/60Hz> is			
		Body Insulation	No failure. First, the terminals of be connected together. Then, a metal foil show wrapped around the late to the distance of above each terminal. Then, be inserted into a commetal balls of about 1 Finally, AC2600V (r.r.)		I togethe Il foil shou Ind the be ise of abou I. Then, tho a cont I about 11 I about 11 I about (r.m.)	r. uld be cloody of the capactainer fillomm diam us.)<50/6	osely ne capacit mm from citor shou ed with neter. 60Hz> is	tor Me	or 60 s be	about 3 to 6mm Metal Balls between the current ≤ 50mA.)	
4	Insulation Resi	Insulation Resistance(I.R.) 10000MΩ min.		min. PASSIVE SYST	The insulation resistance should be measured with DC500±50V within 60± 5 s of charging. The voltage should be applied to the capacitor through a resistor of 1MΩ						
5	Capacitance		Within spe	ecified tolerance	VCD8 VCLI8 VCV. The same shall be accounted at 20, 2% with						
6	Dissipation Fa	ctor(D.F.)		0, 1)	Y5P&Y5U&Y5V: The capacitance shall be measured at		ured at 2	0±2 C With			
	Q		Char. B(Y5P) E(Y5U) SL	Specifications 2.5% max, Q≥400+20C*,(C<30pF) Q≥1000 (C≥30pF)	1kHz±20% at SL: The ca and1.0Vrms	pacitanc		be mea	asured a	at 25°C	with 1MHz±20%
7	Temperature Characteristic		Char.	Capacitance Change Within ± 10%	The capacita table	nce meas	suremen	t shall be	made at	each ste	p specified in
			E(Y5U)	Within +20/-55%	Step	1	2	3	4	5	
				nge: -25 to +85°C)	Temp.(°C)	+20±2	-25±2	+20±2	+85±2	+20±2	
			Char. SL (Temp. rar	Capacitance Change -1000~+350 ppm/°C rge: +20 to +85°C)	Pr-treatment Capacitor sha condition*2 fo	all be sto				Then plac	ced at room

[&]quot;C" expresses nominal capacitance value (pF). *

^{* &}quot;room condition" temperature: 15~35°C, humidity: 45~75%,atmospheric pressure: 86~106kPa

POE-D21-01-E-07

Ver: 07

Page: 11/20

No	Iter	n	Specification	Testing Method
8	Robustness of terminations	Tensile		As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.
		Bending	Lead wire shall not cut off capacitor shall not be broken.	With the termination in its normal position, the specimen is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the specimen is then inclined, within a period of 2 to 3sec, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.
9	Soldering Effect	Appearance	No marked defect	As shown in figure, the lead wires should be immersed in solder of 350 \pm 10 $^{\circ}$ C
	(Non-Preheat)	I.R.	1000MΩ min.	or 260 ± 5 °C up to 1.5 to 2.0mm from the root of
		Dielectric	Per Item 3	Terminal for 3.5 ± 0.5 sec (10 ± 1 sec for 260 ± 5 °C)
Strength Per Item 3. Capacitance Change B(Y5P),E(Y5U): Within ±10% SL: Within ±2.5% or		B(Y5P),E(Y5U): Within ±10%	Screen 1.5 1.5 1.5 Molten Solder	
	±0.23		雄所有	Pre-treatment: Capacitor shall be stored at 125±2°C for 1hour.then placed at **1room condition for 24±2hours before initial measurements. Post-treatment: Capacitor shall be stored for 1 to 2hours at **1room condition.
10	10 Soldering Effect	Appearance	No marked defect.	First the capacitor should be stored at $120 + 0 / -5$ °C for $60 + 0 / -5$ sec.
	(On-Preheat)	I.R.	1000MΩ min.	Then, as in figure, the lead wires should be immersed solder of $260 + / -5$ °C
		Dielectric		up to 1.5 to 2.0 mm from the root of terminal for 7.5 +0 / -1 sec. Thermal
		Strength Capacitance	Per Item 3.	Screen. 1.5 to 2.0mm
		Change	B(Y5P),E(Y5U): Within ±10% SL: Within±2.5% or ±0.25pF, Whichever is large.	Pre-treatment: Capacitor shall be stored at 125±2°C for 1hour.then placed at **1room condition for 24±2hours before initial measurements. Post-treatment: Capacitor shall be stored for 1 to 2hours at **1room condition.
11	Solderability of leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of capacitor should be dipped into molten solder for 5 ± 0.5 sec. The depth of immersion is up to about 1.5 to 2.0 mm from the root of lead wires. Temp. of solder : Lead free solder (Sn97 -Cu3) $245 \pm 5 ^{\circ}\text{C}$
12	Passive Flammabil	ity	The burning time shall not be exceeded the time 30 sec. The tissue paper shall not ignite.	The capacitor under test shall be held in the flame in the position, which best promotes burning. Each specimen shall only be exposed once to the flame. Time of exposure to flame: 30 sec Length of flame: 12±1 mm Gas burner: Length 35 mm min. Inside Dia.: 0.5±0.1 mm Outside Dia.: 0.9 mm max. Gas: Butane gas Purity 95% min. Fig. Test specimen Test specimen

[&]quot;room condition" temperature: 15~35°C, humidity: 45~75%, atmospheric pressure: 86~106kPa

 $[\]mbox{\ensuremath{\%}}$ "C" expresses nominal capacitance value (pF).

POE-D21-01-E-07

Ver: 07

Page: 12/20

No	Item	1	Specification	Testing Method
13	Life	Appearance	Impulse Voltage:	
		Capacitance	B(Y5P),E(Y5U) : Within ±20%	Each individual capacitor shall be subjected to a 5kv impulses for three times.
		Change	SL: Within±3% or ±0.3pF,	After the capacitors are applied to life test.
			Whichever is large.	The waveform will be determined by the test circuit parameters. Details of
				the test circuit are given in IEC 60384-14 Annex A.
				100 (%)
				Front time (T1) = 1.2 μ s = 1.67T
		I.R.	B(Y5P),E(Y5U) : 3000MΩ min.	Time to half-value (T2) =50µs
			SL: 1000MΩ min.	30-/
		Dielectric	Per Item 3.	0 1
		Strength		- T
				T1
				T ₂
				The specimen capacitors are placed in a circulating air oven for a period of
				1000 hrs. The air in the oven is maintained at a temperature of $125\pm2^{\circ}$ C.
				Throughout the test. The capacitors are subjected to an AC510Vrms.(for 1AC
				type) alternating voltage of mains frequency Pre-treatment: Capacitor shall be stored at 125±2°C for 1hour.then placed at
			, +	*1room condition for 24±2hours before initial measurements.
			w Shr 月	Post-treatment: Capacitor shall be stored for 1 to 2hours at **1room condition.
14	Active Flammability	/	The cheesecloth shall not be on	The specimens shall be individually wrapped in at least one but more then two
			fire.	complete layers of cheesecloth. The specimens shall be subjected to 20
			J-Vrm L	discharges. The interval between successive discharges shall be 5sec. The Uac
			THU THE	shall be maintained for 2 min. after the last discharge.
			##/	S1 L1 L2 R
				\sim
			PASSIVE SYS	S2 UAC L3 L4
			195	
			喜。	
			SE 0:	Osciloscope
			Chi	C1,2: 1uF±10% C3: 0.033uF±5% 10KV
			A/Cu chno	L1-4: 1.5mH±20% 16A Rod core choke
			FOLING	R : 100Ω±2% Ct : 3uF±5% 10KV
			Na sin Technology	Uac : Ur±5% Ur : Rated working voltage
			3001	Cx : Capacitor F : Fuse, Rated 10A
				Ut : Voltage applied to Ct
				Ux
				5kV
				time
Щ.				

[&]quot;room condition" temperature: 15~35°C, humidity: 45~75%, atmospheric pressure: 86~106kPa

[&]quot;C" expresses nominal capacitance value (pF).

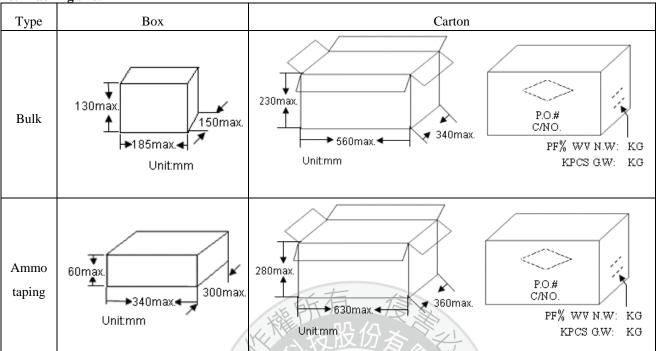
POE-D21-01-E-07

Ver: 07

Page: 13/20

No	Iter	n	Specification	Testing Method
15	Humidity (Under Steady State)	Appearance Capacitance Change D.F. Q	No marked defect $B(Y5P): Within \pm 10\% \\ E(Y5U): Within \pm 20\% \\ SL: Within \pm 2.5\% \text{ or } \pm 0.25 \text{pF}, \\ Whichever is large.}$ $Char. Specifications$ $B(Y5P) \\ E(Y5U) \\ 5.0\% \text{ max.}$ $Q \ge 100 + 10 \times \text{C}/3 \stackrel{*}{\approx} 2(\text{C} < 30 \text{pF}) \\ Q \ge 200 \text{ (C} \ge 30 \text{pF}) \\ B(Y5P), E(Y5U): 3000 \text{M}\Omega \text{ min.}$ $SL: 1000 \text{M}\Omega \text{ min.}$	Set the capacitor for 500±12 hours at 40±2°C, in 90 to 95% humidity. Pre-treatment: Capacitor shall be stored at 125±2°C for 1hour then placed at **1room condition for 24±2hours before initial measurements. Post-treatment: Capacitor shall be stored for 1 to 2hours at **1room condition.
16	Humidity Loading	Dielectric strength	Per Item 3 No marked defect	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to 95%
10	Training Louding	Capacitance Change	B(Y5P): Within ±10% E(Y5U): Within ±20% SL: Within±2.5% or ±0.25pF, Whichever is large.	humidity.
		D.F. Q	$\begin{array}{c c} Char. & Specifications \\ \hline B(Y5P) \\ E(Y5U) \\ \hline SL & Q \geq 100 + 10 \times C/3 \stackrel{**2}{\sim} (C < 30 pF) \\ \hline Q \geq 200 \ (C \geq 30 pF) \\ \hline \end{array}$	Pre-treatment: Capacitor shall be stored at 125±2°C for 1hour.then placed at *1room condition for 24±2hours before initial measurements. Post-treatment: Capacitor shall be stored for 1 to 2hours at *1room condition.
		I.R. Dielectric	B,E: 3000MΩ min. SL: 1000MΩ min. Per Item 3	
17	Temperature Cycle	strength Appearance Capacitance Change D.F. Q	No marked defect PASSIVE SYSTEM Char. Capacitance Change B(Y5P) Within \pm 10% E(Y5U) Within \pm 20% SL Within \pm 10% Char. Specifications B(Y5P) 5.0% max. E(Y5U) 7.5% max. SL $Q \ge 275 + 5/2C \stackrel{*}{=} (C < 30 \text{pF})$ $Q \ge 350 (C \ge 30 \text{pF})$	The capacitor should be subjected to 100 temperature cycles, Temperature Cycle time: 100 cycles> Step
		I.R. Dielectric strength	3000MΩ min. Per Item 3	condition.

[&]quot;room condition" temperature : 15~35°C , humidity : 45~75%, atmospheric pressure : 86~106kPa


[&]quot;C" expresses nominal capacitance value (pF).

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOT DOL 04 T 05	** 05	D 11/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 14/20

8. Packing Baggage:

8.1 Packing size:

8.2 Packing quantity:

Packing type T	The code of 14th to 15th in SAP P/N	سال	MPQ	(Kpcs/Box)
т.	AF PASSIVE SYSTEM ALLIANCE	L	.D.	1
Taping	AM	120	FR	0.5

D 1:	Y 11 4	THE STATE OF THE S	Sept.	MPQ
Packing type	Lead length	The code of 14th to 15th in SAP P/N	Kpcs / Bag	Kpcs / Box
D 11	Long lead (L≧20mm)	05~11	0.5	1.5
Bulk	Short lead (L<20mm)	05~11	0.5	2

8.3 Label samples:

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 05		D 15/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 15/20

9. Caution:

9.1 Operating voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage
Positional measurement	V0-p	V0-p	Vp-p

9.2 Operating temperature and self-generated heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by

9.3 Test condition for withstanding voltage

(1) Test equipment

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

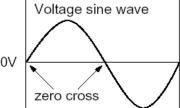
If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) Voltage applied method

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.


*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

(3) Applied voltage

The voltages of Table shall be applied between the respective measuring points of 1 min for qualification approval and periodic testing and for a period of not less than 1 s for lot-by-lot quality conformance testing, a voltage proof test such as Test C shall be carried out only for qualification approval tests and periodic tests;

Attention is drawn to the fact that repetition of the voltage proof test by the user may damage the capacitor. If repetition of the voltage proof test is made by the user, the applied voltage should not be greater than 66 % of the test voltage specified in Table .

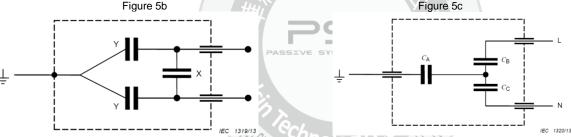
CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE DA1 01 E 05	** 05	D 46/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 16/20

Table -Voltage proof

Class	Range of rated voltages	Test A	Test B or Test C
X1	≤1 000 V	4,3 UR (d.c.) c	2 UR + 1 500 V (a.c.) with a minimum of 2 000 V (a.c.) a
Y2	≥150 V ≤500 V	UR + 1 200 V (a.c.) with a minimum of 1 500 V (a.c.) b	2 UR + 1 500 V (a.c.) with a minimum of 2 000 V (a.c.) b

a For Delta and T-connected capacitor units according to Figures 5b and 5c, the test voltage for terminals to case shall be the appropriate test voltage for the Y-capacitors.

Note:


Test A - Between terminations

Test B - Internal insulation

Test C - External insulation (applicable only to insulated capacitors in nonmetallic case or in insulated metal case)

Figure 5b - Delta by-pass capacitor (in metallic housing)

Figure 5c - Example of a T-connected by-pass capacitor (in non-metallic housing) Figure 5b

*For capacitors with non-metallic housings, the earth connection is brought out as a separate termination as is shown in Figure 5c.

9.4 Fail-Safe

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

9.5 Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

9.6 Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max.

Soldering iron wattage: 50W max.

Soldering time: 3.5s max.

ь For lot-by-lot tests of Class Y2 capacitors, the a.c. test voltage may be replaced by a d.c. voltage of 1,5 times the prescribed a.c. voltage.

 $_{\text{c}}$ The U_{R} in this d.c. test is the rated a.c.voltage value.

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE DA1 01 E 05	** 05	5 45/00
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 17/20

9.7 Bonding, resin molding and coating

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

9.8 Treatment after bonding, resin molding and coating

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile.

So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9.9 Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

9.10 Limitation of applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

10. Notices:

10.1 Cleaning (ultrasonic cleaning):

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOE D21 01 E 05		D 10/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 18/20

10.2 List of substances that affect the insulation strength of coating:

Epoxy resin solvent

Category	Model		
Ketone	Acetone	Butanone	Cyclohexanone
Esters	Ethyl acetate	Dibutyl phthalate	
Chlorinated hydrocarbons	Dichloromethane		

Category		Model		
		HK-66 (Alkyl glycidyl ether)		
		501 (Butyl glycidyl ether)		
	Simple function group	690 (Phenyl Glycidyl Ether	r)	
		AGE (C12-14Aliphatic Pol	lyalcohol Glycidyl Ether)	
		692 (Benzyl Glycidyl Ethe	her)	
Reactive diluentactivated thinner		D-678 (Neopentyl glycol diglycidyl ether)		
		622 (1,4-Butanediol diglycidyl ether)		
	Two functional arrays	669 (Ethylene glycol diglycidyl ether)		
	Two functional groups	X-632 (Polypropylene glycol diglycidyl ether)		
			X-652 (1,6-Hexadiol diglycidyl ether)	
		D-691Epoxypropane o-met	thylphenyl ether	
		Anhydrous ethanol	Toluene	
	45. F		Dimethylbenzene	
Non-activated thinner		Dimethyl formamide	Butyl acetate	
		Acetone	Styrene	
	THE WALL	Polyol	Benzyl alcohol	

Note: The above substances should not contact the coating of the product body, otherwise it will affect the insulation strength of the product

10.3 Capacitance change of capacitors

Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage.

Please contact us if you use for the strict time constant circuit.

Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

10.4 Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

11. Note

- 11.1 Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- You are requested not to use our product deviating from this specification.
- Do not use these products in any Automotive Power train or Safety equipment including Battery charger for Electric Vehicles and Plug-in Hybrid.

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOT DA1 01 F 05	** 0.7	D 10/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 19/20

12. Soldering Recommendation:

12.1 Wave Soldering Profile:

- Temperature conditions of the flow is recommended as shown in the chart
- Must implement the pre-heat
- Maximum peak flow temperature is recommended 265°C
- \bullet Time "T" implement in the chart recommended within 20 sec. it temperature exceed 200°C
- Take care with the flow solder not to touch the capacitor body directly at mounting

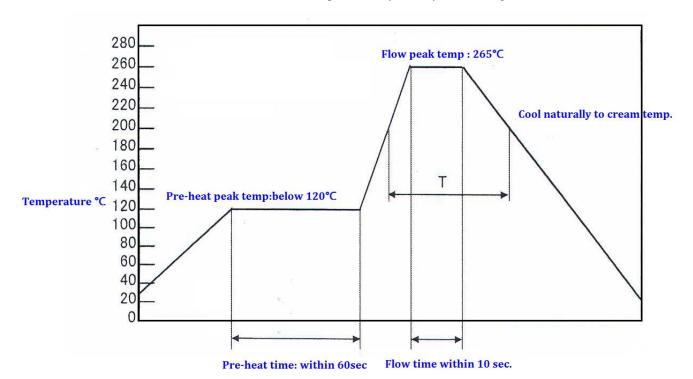
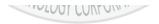
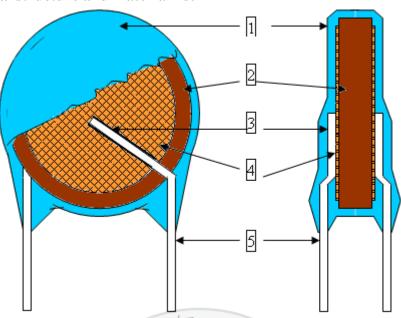



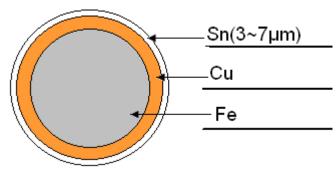
Chart to show flow recommended temp

12.2 Recommended Reworking Conditions with Soldering Iron:


- Temperature of iron-tip: 400 degrees C. max.
- Soldering iron wattage: 50W max.
- Soldering time: 3.5 sec. max.
- Distance from coating body: 2 mm (min.)

12.3 Reflow-Soldering: Lead Ceramic Cap. should not be soldered by reflow-soldering.

CERAMIC DISC CAPACITOR SAFETY RECOGNIZED,	DOD DA4 04 D 05	** 05	20/20
AC SERIES (Small Size)	POE-D21-01-E-07	Ver : 07	Page: 20/ 20


13. Drawing of internal structure and material list:

Remarks:

1 Insulation Coating Epoxy polymer 2.ECP-357 Resins (3.PCE-300 (Blue /	llitic dianhydride15 、Silica20、 Epoxy)65 UL 94 V-0)
SL:\S	
	rCO3/TiO2/Bi2O3/CaCO3 aTiO3/Bi2O3/SnO2/CeO2 5U: BaTiO3/ZrO2/ CaCO3
3 Solder Tin-Cu Sn-Cu solder Confide	ntiality
4 Electrodes Cu Confidentiality Confide	ntiality
5 k 1 · · · · · · · · · · · · · · · · · ·	Surface plating: Sn 100%(3~7μm)] · Fe92.5 [Substrate metal]

*Constituent structure chart of lead

单击下面可查看定价,库存,交付和生命周期等信息

>>Walsin Technology(华新科技)