

# APPROVAL SHEET

# **MK06S, MK08S**

 $\pm 0.5\%$ ,  $\pm 1\%$ ,  $\pm 5\%$ 

Thick Film Power Surge Chip Resistors High Grade AEC Q200 Qualified Anti-Sulfuration Size 0603, 0805

\*Contents in this sheet are subject to change without prior notice.



#### **FEATURE**

- 1. Power rating and compact size
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. High anti-surge protection
- 5. Halogen free
- 6. Automotive high grade AEC Q-200 qualified
- 7. Anti-sulfuration against ASTM B-809 60'C, 95% RH, 1000hrs

#### **APPLICATION**

- Power supply
- Measurement instrument
- Automotive industry
- · Medical or Military equipment

#### DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to request resistance to nominal value within tolerance which controlled by printing process in this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (Pb free) alloy.

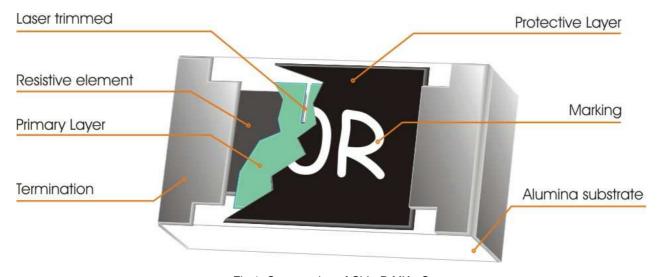
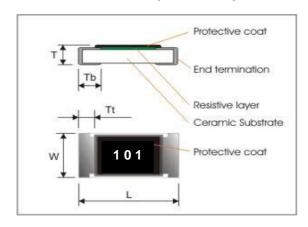



Fig 1. Construction of Chip-R MKxxS



#### **QUICK REFERENCE DATA**


| Item                                       | General Specification | General Specification |  |
|--------------------------------------------|-----------------------|-----------------------|--|
| Series No.                                 | MK06S                 | MK08S                 |  |
| Size code                                  | 0603 (1608)           | 0805 (2012)           |  |
| Resistance Tolerance                       | ±0.5% ±1%, (E24+E96)  | ±0.5% ±1%, (E24+E96)  |  |
|                                            | ±5%, (E24)            | ±5%, (E24)            |  |
| Resistance Range                           | 1Ω ~ 1ΜΩ              | 1Ω ~ 1ΜΩ              |  |
| TCR (ppm/°C)                               |                       |                       |  |
| 10Ω ~ 1ΜΩ                                  | ± 100 ppm /°C         | ± 100 ppm /°C         |  |
| $1\Omega \sim 9.76\Omega$                  | ± 200 ppm /°C         | ± 200 ppm /°C         |  |
| Max. dissipation at T <sub>amb</sub> =70°C | 1/4W                  | 1/3W                  |  |
| Max. Operation Voltage                     | 150V                  | 200V                  |  |
| Max. Overload Voltage                      | 300V                  | 400V                  |  |
| Operation temperature                      | - 55 ~ +155'C         | - 55 ~ +155'C         |  |

#### Note:

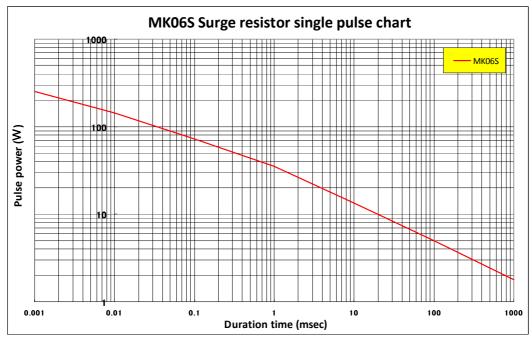
- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance Value}$  or Max. RCWV listed above, whichever is lower.

# **MECHANICAL DATA(unit: mm)**



| Symbol | MK06S            | MK08S           |  |
|--------|------------------|-----------------|--|
| L      | 1.60 ± 0.10      | 2.00 ± 0.10     |  |
| W      | 0.80 +0.15/-0.05 | 1.25 ± 0.10     |  |
| Т      | $0.45 \pm 0.10$  | 0.55 ± 0.10     |  |
| Tt     | $0.25 \pm 0.10$  | $0.30 \pm 0.20$ |  |
| Tb     | $0.30 \pm 0.10$  | $0.40 \pm 0.20$ |  |




#### **MARKING**

- 1. For 0805, each resistor is marked with 3 digits or 4 digits on the protective coating to designate the nominal resistance value. E24 series: 3 digits; E96 series: 4 digits. In case E96 overlaps with E24, 3 digits should be marked.
- 2. For 0603 E24, each resistor is marked with 3 digits. No marking for E96!
- 3. Example as below

| Marking example | Contents                                             |
|-----------------|------------------------------------------------------|
| 123             | $12\times10^3 \ [\Omega] \rightarrow 12 \ [k\Omega]$ |
| 2R2             | 2.2 [Ω]                                              |
| 5623            | $562\times10^{3} [\Omega] \rightarrow 562[k\Omega]$  |
| 12R7            | 12.7 [Ω]                                             |

## Single pulse limiting power chart



#### **De-rating curve**

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

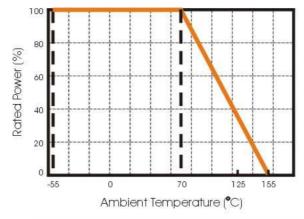



Fig.2 Maximum dissipation in percentage of rated power As a function of the ambient temperature



#### **MOUNTING**

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

#### **SOLDERING CONDITION**

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

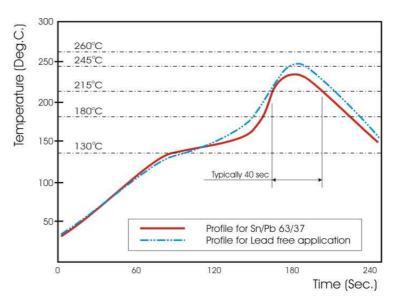



Fig 3. Infrared soldering profile for Chip Resistors

#### **CATALOGUE NUMBERS**

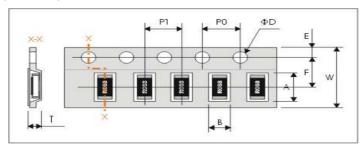
The resistors have a catalogue number starting with .

| MK06       | s         | 472_                                  | J         | Т              | L                 |
|------------|-----------|---------------------------------------|-----------|----------------|-------------------|
| Size code  | Type code | Resistance code                       | Tolerance | Packaging code | Termination code  |
| MK06: 0603 | S : surge | E24: 3 significant                    | J: ±5%    | T:7" Reeled    | L = Sn base (lead |
| MK08: 0805 |           | digits followed by no. of zeros and a | F: ±1%    | taping         | free)             |
|            |           | blank                                 | D: ±0.5%  |                |                   |
|            |           | 472 = 4K7                             |           |                |                   |

#### **Taping quantity**

- 0603/0805 Chip resistors 5,000 pcs paper tape per 7" reel.

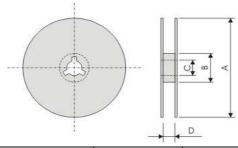



**TEST AND REQUIREMENTS(JIS C 5201-1: 1998)** 

| TEST                                                        | PROCEDURE                                                                                                                                                                     | REQUIREMENT                                                                                         |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| High temperature exposure MIL-STD-202 method 108            | 155°C, no load, 1000hours                                                                                                                                                     | $\Delta$ R/R max. $\pm$ (1%+0.05 $\Omega$ ) no visible damage                                       |
| Temperature cycling AEC Q200-4                              | 30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +155°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 1000 cycles                                                      | no visible damage<br>$\Delta$ R/R max. $\pm$ (0.5%+0.05 $\Omega$ )                                  |
| Bias Humidity MIL-STD-202 method 103                        | 1000 hours, at 10% rated continuous power in humidity chamber controller at 85°C±2°C and 85% relative humidity,                                                               | $\Delta$ R/R max. $\pm$ (1%+0.05 $\Omega$ ) no visible damage                                       |
| Operational Life MIL-STD-202 method 108                     | 1000+48/-0 hours; 35% of operation power, 125±2°C                                                                                                                             | $\Delta$ R/R max. $\pm$ (1%+0.05 $\Omega$ ) no visible damage                                       |
| Resistance to Solvent MIL-STD-202 method 215                | Solvent: 2–propanol at 25°C Immersion time: 3 min Brush: 10 times brushing Immersion and brush cycle: 3cycle                                                                  | $\Delta$ R/R max. $\pm (0.5\% + 0.05\Omega)$ no visible damage                                      |
| Mechanical Shock MIL-STD-202 method 213                     | Waveform: half sine, Peak value100G, Normal duration 6ms Condition: XX'YY'ZZ', 10times each                                                                                   | $\Delta$ R/R max. $\pm (0.5\% + 0.05\Omega)$ no visible damage                                      |
| Vibration<br>MIL-STD-202 method<br>204                      | Peak acceleration and Sweep time: 5 g's for 20 min , Frequency 10Hz to 2000Hz, Condition: 12 cycles each of 3 orientations                                                    | $\Delta$ R/R max. ±(0.5%+0.05 $\Omega$ ) no visible damage                                          |
| Resistance to soldering heat (R.S.H) MIL-STD-202 method 210 | Un-mounted chips completely immersed for 10±1second in a solder bath at 260°C±5°C                                                                                             | $\Delta$ R/R max. $\pm (0.5\% + 0.05\Omega)$ no visible damage                                      |
| ESD test JIS-STD-002                                        | Human body model, 2 Kohm, 150 pF,<br>Test voltage: 2KV                                                                                                                        | $\Delta$ R/R max. $\pm$ (1%+0.05 $\Omega$ ) no visible damage                                       |
| Solderability JIS-STD-002                                   | a) Bake the sample for 155 °C dwell time 4hrs / solder dipping 235 °C/5s. Solder: Sn96.5-Ag3-Cu0.5 b) Solder dipping 215 °C/5s. Solder: Sn63Pb37 c) Solder dipping 260 °C/7s. | good tinning (>95% covered) no visible damage                                                       |
| Temperature Coefficient of Resistance(T.C.R)  Clause 4.8    | Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \ (\text{ppm/°C})  t_1:20\text{C+5C-1C}$                                  | Refer to "QUICK<br>REFERENCE DATA"                                                                  |
|                                                             | R <sub>1</sub> : Resistance at reference temperature R <sub>2</sub> : Resistance at test temperature +155'C                                                                   |                                                                                                     |
| Bending strength AEC Q200-005                               | Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 2 mm, once for 60 seconds                                                                                   | $\Delta$ R/R max. $\pm (0.5\% + 0.05\Omega)$ no visible damage                                      |
| Adhesion AEC Q200-006                                       | Pressurizing force: 10N for 0603; 17.7N for 0805, Test time: 60±1sec.                                                                                                         | $\Delta$ R/R max. $\pm (0.5\% + 0.05\Omega)$<br>No remarkable damage or removal of the terminations |
| Sulfuration test<br>ASTM B-809-95                           | ASTM B-809-95 Sulfur vapor Test temp.: 60°C Relative humidity: 95% Test period: 1000h                                                                                         | $\Delta$ R/R max. $\pm$ (1%+0.05 $\Omega$ ) no visible damage                                       |



#### **PACKAGING**


## Tape specifications (unit :mm)



| Series No. | Α         | В         | W         | F         | E         |
|------------|-----------|-----------|-----------|-----------|-----------|
| MK06S      | 1.90±0.20 | 1.15±0.15 | 8.00±0.30 | 3.50±0.05 | 1.75±0.10 |
| MK08S      | 2.50±0.20 | 1.65±0.15 | 8.00±0.30 | 3.50±0.05 | 1.75±0.10 |

| Series No. | P1        | P0        | ΦD                                    | Т        |
|------------|-----------|-----------|---------------------------------------|----------|
| MK06S      | 4.00±0.10 | 4.00±0.10 | $\Phi$ 1.50 $^{+0.1}_{-0.0}$          | Max. 0.8 |
| MK08S      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup> <sub>-0.0</sub> | Max. 1.0 |

#### **Reel dimensions**



| Reel / Tape          | Α             | В         | С        | D       |
|----------------------|---------------|-----------|----------|---------|
| 7" reel for 8mm tape | Ф180.0+0/-1.5 | Φ60.0+1/0 | 13.0±0.2 | 9+1.0/0 |

# **Taping quantity**

- 0603/0805 Chip resistors 5,000 pcs paper tape per 7" reel.

单击下面可查看定价,库存,交付和生命周期等信息

- >>Walsin Technology(华新科技(华科))
- >>点击查看相关商品