PSA

3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR

POE-D02-00-E-14

Ver: 14 Page: 1 of 16

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

TYPE: 3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR

CUSTOMER:

DOC. NO.: POE-D02-00-E-14

Ver.: 14

APPROVED BY CUSTOMER

VENDOR:

■ WALSIN TECHNOLOGY CORPORATION

566-1, KAO SHI ROAD, YANG-MEI

TAO-YUAN, TAIWAN

☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, HUANGPU DISTRICT ,GUANG ZHOU,CHINA

TICANGI C DISTRICT, GCANG ZITOC, CITINA

MAKER: PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, HUANGPU DISTRICT ,GUANG ZHOU,CHINA

Ver: 14 3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR POE-D02-00-E-14 Page: 2 of 16

Record of change							
Date	Version	Description	page				
2008.6.3	1	1. F03-00-F-09 (before) → POE-F02-00-F-01 (1 st edition)					
2008.8.22	2	1. Complete lead code	5-16				
		2. Add last SAP code "H" for halogen and Pb free, epoxy resin	2,10				
		3. Remove F(PITCH)=5.0+/-0.8 mm for 3 KV (all lead type)	15				
2008.12.12	3	1. Complete the 13 th to 17 th codes of SAP P/N.	4-5				
		2. Page layout adjustment.					
		3. Added Marking when the coating resin is Halogen and Pb free					
		Epoxy.					
2009/8/19	4.	1. Change PSA & POE logo to Walsin & POE logo.					
		2. capacity list → product range	6				
2010/9/9	5	1. Review "but $D\phi \le 6.0$ mm shall be omitted." to "but when the code of body diameter dimension ≤ 060 shall be omitted."	7				
2012/5/6		 Add date code on marking (item 7~12). Review the Lead diameter φ from 0.60 +/-0.06mm to 0.55+/-0.05mm 	7 5,6,8				
2013/5/6	6	2. Review the Solderability temperature from 235±5°C to 245±5°C, solderability time from 2±0.5s to 5±0.5s.	10				
2013/10/18	7	Review the packing specification	11				
2016/3/2	8	 Review the Available lead code of Lead Configuration. Delete the definition about "Old Part No." Delete 6pF~22pF (Code of diameter dimension is 060), 24pF (Code of diameter dimension is 070), 27pF~30pF (Code of diameter dimension is 080) and 33pF (Code of diameter dimension is 090) for P/N CH 3KV. 	U				
		4. Review 9. Drawing of internal structure and material list	15				
2016/11/3	9	 Delete "CH" series. Delete 5pF~8pF (Code of diameter dimension is 060) for P/N SL 3KV. 	4,6,7,10~13,15 6				
2019/7/26	10	1. Review the Hole-down tape width (W0) from 11.5mm min. to 8.0mm min.	8				
2021/9/9	11	1. Delete Walsin & POE logo.	1				
2022/1/8	12	1. Add "Soldering Recommendation"	15				
2022/4/21	13	1. Add 8.8 List of substances that affect the insulation strength of coating	14				
2023/6/15	14	1. The last code "B" is changed from "Epoxy Resin, Pb free" to "Halogen free and Pb free, epoxy resin".	4,7				

POE-D02-00-E-14

Ver: 14 Page: 3 of 16

Table of Contents

No.	Item	Page
1	Part number for SAP system	4
2	Mechanical	5
3	Capacitance value vs. Rate voltage, product diameter	6
4	Marking	7
5	Taping Format	8
6	Specification and test method	9~11
7	Packing specification	12
8	Notices	13~14
9	Soldering Recommendation	15
10	Drawing of internal structure and material list	16
	(本)	
	州四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
	PASSAVE SYSTEM ALLEANSES	
	92	

3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR	POE-D02-00-E-14	Ver: 14 Page: 4 of 16
--	-----------------	--------------------------

1. Part number for SAP system:

<u>SL</u> <u>3 0 2</u> <u>1 0 0</u> <u>J</u> <u>0 6 0</u> <u>B</u> <u>2 0</u> <u>C</u> <u>7</u> <u>H</u> (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1)Temperature Characteristic : SL:+350~-1000ppm/°C

(2)Rate Voltage(identified by 3-figure code): 302=3KVDC

(3)Rate Capacitance (identified by code) : ex. 100=10pF, 101=100pF

(4) Tolerance of Capacitance : $J = \pm 5\%$ (For above 10pF), $K = \pm 10\%$

(5) Nominal body diameter dimension (Ref. to page .6 D ϕ Code spec.) .

(6)Lead Style: Refer to "2. Mechanical".

(7) Packing mode and lead length (identified by 2-figure code):

Taping Code	Description
AF	Box and Pitch: 15.0 mm
AM	Box and Pitch: 25.4 mm

Bulk Code	Description
3E	Lead length: 3.5mm
04	Lead length: 4.0mm
4E	Lead length: 4.5mm
20	Lead length: 20.0mm

(8)Length tolerance:

Code	Description	
A	± 0.5 mm(Only for short kink lead code "D / X / H")	Short lead
В	±1.0 mm	Short lead
С	Min.	Long lead
D	Taping special purpose	Taping

(9)Lead Pitch:

Code	Description
7	7.5±1 mm
0	10±1 mm

(10)Epoxy Resin Code:

Code	Description			
В	Helegan and Dh. free anavy regin			
Н	Halogen and Pb free, epoxy resin.			

POE-D02-00-E-14

Ver: 14 Page: 5 of 16

2. Mechanical:

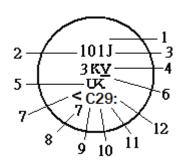
Available lead code (Epoxy Resin Coating)- (unit: mm)

Available le	Available lead code (Epoxy Resin Coating)- (unit: mm)							
Lead type	SAP P/N (13-17)digits	Pitch (F)	Lead Length (L)	Packing	Lead Configuration			
	B20C7	7.5 ± 1.0	20 MIN.	Bulk	D max. T max.			
	B20C0	10 ± 1.0	20 MIN.	Duik				
Lead style: B Straight long lead	BAFD7	7.5 ± 1.0	Refer to "5. Taping	T. A	•			
	BAMD0	10 ± 1.0	format"	Tap. Ammo	↑ F → L L			
	L03B7	7.5 ± 1.0	3.0 ± 1.0		D max. T max.			
	L4EB7	7.5 ± 1.0	4.5 ± 1.0					
	L05B7	7.5 ± 1.0	5.0 ± 1.0					
Lead style: L	L10B7	7.5 ± 1.0	10.0 ± 1.0					
Straight short	L03B0	10 ± 1.0	3.0 ± 1.0	Bulk	l .λ ⟨ IJ U			
lead	L4EB0	10 ± 1.0	4.5 ± 1.0	-				
icud	L05B0	10 ± 1.0	5.0 ± 1.0		▎ ▎ ▎ ▎ ▎ ▎			
	L10B0	10 ± 1.0	10.0 ± 1.0		Ø d - L			
	X3EA7	7.5 ± 1.0	3.5 ± 0.5		D max. T max.			
	X04A7	7.5 ± 1.0	4.0 ± 0.5	1				
	X05B7	7.5 ± 1.0	5.0 ± 1.0					
Lead style: X	X3EA0	$\frac{7.5 \pm 1.0}{10 \pm 1.0}$	3.5 ± 0.5	Bulk	()			
Outside kink				1517	., \ \ \ \ \			
lead	X04A0	10 ± 1.0	4.0 ± 0.5	= 20				
	X05B0	10 ± 1.0	5.0 ± 1.0	// -	×i-f			
	XAFD7	7.5 ± 1.0	Refer to "5. Taping	Tap. Ammo	ød-l+ød L			
	XAMD0	10 ± 1.0	format"	Tup. Tillillo				
	D3EA7	7.5 ± 1.0	SSIVE 3.5 ± 0.5 LLIANCE		D max.			
	D04A7	7.5 ± 1.0	4.0 ± 0.5	Spitt				
	D3EA0	10 ± 1.0	3.5 ± 0.5	Bulk				
Lead style: D	D04A0	10 ± 1.0	4.0 ± 0.5	(D) (SE)				
Vertical kink	DAFD7	7.5 ± 1.0	0					
short lead	DAMD0	10 ± 1.0	Refer to "5. Taping format"	Tap. Ammo	Ø d +			
Lead style: H	НЗЕА0	10.0±1.0	3.5±0.5 mm	Bulk	D max.			
Inside kink	HAFD0				× 1			
lead	HAMD0	Refer to "5	5. Taping format"	Tap. Ammo	Sign of the state			
Lead style: M Double outside kink lead	M04B7	7.5 ± 1.0	4.0 ± 1.0	DII-	D max.			
	M04B0	10 ± 1.0	4.0 ± 1.0	Bulk	F _Ø d→			

^{*} Lead diameter Φd: 0.55+/-0.05mm

^{*} Coating extension on leads): 3.0mmMax for straight lead lead style, not exceed the kink for kink lead.

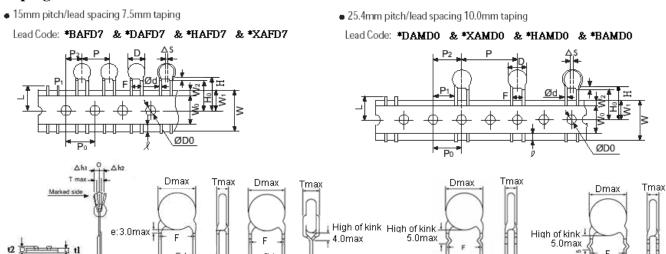
3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR POE-D02-00-E-14 Ver: 14 Page: 6 of 16


3. Capacitance value vs. Rate voltage, product diameter:

•	raide vs. Rate voltage, p			SL
	cturing product Rate voltage, product dia		Photo	68J 3KV UK UK
T.C.	SL (CLASS	I , Temperature:+20°C ~+85°	C, T.C.C.: +350	0 ~ -1000ppm)
Rate voltage		3KV		
Dφ(Code)	060	070		080
D max. (mm)	7.5	8.5		9.5
T max. (mm)	5.0	5.0		5.0
10	100			
12	120			
15	150			
18	180			
20	200			
22	220			
24	240			
27	270			
30	300			
33	330			
36	360	1 + 1		
39	390	纸目 急		
47		470	Bell	
51	The state of the s	人 [7]		
56		560		
62	t.V.	620		
68	177//	680		770
75 82				750 820
100				101
φd (mm)		SSIVE SYSTE 0.5.5±0.05	NCE	101
ACKING	SPEN NO.	TAPING or B	ULK S	JAKA T
COATING		Epoxy Resi	n	

3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR POE-D02-00-E-14 Ver: 14 Page: 7 of 16

4. Marking:


1. Temperature characteristic	2. Nominal capacitance	3. Capacitance tolerance	4. Rated voltage	5. Manufacturer's identification	6. Halogen and Pb free		
SL: No marking	Identified by 3-figure code 1. when Cap.≥100pF Ex. 120pF →"121" 2. When Cap.≤100pF		3000V : Be marked "3kV"	Shall be marked as "以", but when the code of body diameter dimension ≤060 shall be omitted.	When the epoxy resin is Halogn and Pb free, there is a "-"marking. (For the last code "H" and "B" of the SAP P/N)		
Definition of date	Definition of date code marking:						
7.Supplier of Epoxy	8.No. of test equipment	9.Factory of manufacture	10.Year of manufacture	11.Month of manufacture	12.Week of manufacture by month		
<:K-company ,: P-company	1~9: No.1~No.9, J: No.10, K: No.11, L: No.12		1:2021, 2:2022, 3:2023, 4:2024, 5:2025, 6:2026, 7:2027,···	1~9:January~ September, O: October, N: November, D: December	week 1: - week 2: week 3: week 4: week 5: ;		

POE-D02-00-E-14

Ver: 14 Page: 8 of 16

5. Taping Format:

*B	*	* D *	*H*	*X*
POE Part Number		*BAFD7	*DAFD7 *HAFD7 *XAFD7	*BAMD0 *DAMD0 *HAMD0 *XAMD0
Item	Symbol	Dimensions (mm)	Dimensions (mm)	Dimensions (mm)
Pitch of component	P	15.0±1.0	15.0±1.0	25.4±2.0
Pitch of sprocket	/√P0	15.0±0.3	15.0±0.3	12.7±0.3
Lead spacing	/////F	7.5±1.0	7.5±1.0	10.0±1.0
Length from hole center to component center	P2	7.5±1.5	7.5±1.5	12.7 ± 1.5
Length from hole center to lead	P1	3.75±1.0	3.75±1.0	7.7±1.5
Body diameter		See the 3. Capacitance v	value vs. Rate vo	ltage, product diameter"
Deviation along tape, left or right	ΔS	10,	0±2.0	
Carrier tape width	W.	126	18.0 +1/-0.5	
Position of sprocket hole	W1		9.0±0.5	
Lead distance between the kink and center of sprocket hole	НО	ECHNOLOGY CORPORATION.	18.0+2.0/-0	18.0+2.0/-0 For: *DAMD0 *HAMD0 *XAMD0
Lead distance between the bottom of body and the center of sprocket hole	Н	20.0+1.5/-1.0		20.0+1.5/-1.0 For: *BAMD0
Protrusion length	Q	2.0max (Or the end	of lead wire may	be inside the tape.)
Diameter of sprocket hole	D0		4.0±0.2	
Lead diameter	φd		0.55 ± 0.05	
Total tape thickness	t1		0.6±0.3	
Total thickness, tape and lead wire	t2		1.5 max.	
Deviation coross taps	△ h1		2.0 max.	
Deviation across tape	Δ h2	2.0 max.		
Portion to cut in case of defect	L		11.0 max.	
Hole-down tape width	W0	8.0min		
Hole-down tape distortion	W2		1.5±1.5	
Coating extension on leads	e	3.0 max for straight lead sty	le; Not exceed t	he kink leads for kink lead.
Body thickness	T	See the "3. Capacitance v	value vs. Rate vo	ltage, product diameter"

3KV TEMPERATURE COMPENSATING CERAMIC CAPACITOR POE-D02-00-E-14 Ver: 14 Page: 9 of 16

6. Specification and test method:

6.1 SCOPE: THIS SPECIFICATION APPLIES TO TEMPERATURE COMPENSATING CONSTANT, 3KV CERAMIC CAPACITOR.

6.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5 $^{\circ}$ C TO 35 $^{\circ}$ C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25 $^{\circ}$ C $^{\circ}$ C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

6.3 HANDLE PROCEDURE: TO AVOID UNEXPECT TESTING RESULTS FROM OCCURING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

6.4 TEST ITEMS:

ITEM	POST-TEST RE	QUIREMENTS	TESTING PROCEDURE
APPEARANCE STRUCTURE SIZE	NO ABNORMALITIES		
MARKING		1, +	AS STATED IN SECTION 4
	BETWEEN TERMINALS: NO ABNORMALITIES		2 TIMES OF THE RATED VOLTAGE. TEST VOLTAGE: 6KVDC, 1~5 SEC, WITH 50mA MAX. CHARGING CURRENT
WITHSTAND VOLTAGEN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY. THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS. (APPLY 1.3KV DC OF RATED VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR 1~5 SEC)
INSULATION RESISTANCE			INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER RATED VOLTAGE APPLIED. RATED VOLTAGE: 500VDC
CAPACITANCE			TESTING FREQUENCY: $1MHZ \pm 20 \%$ TESTING TEMPERATURE: $25 \pm 2^{\circ}C$ TESTING VOLTAGE: 1.0 VRMS
TEMPERATURE RANGE			
Q FACTOR)			AS ABOVE STIPULATION OF CAPACITANCE
TERMINAL	TENSIBLE STRENGTH: NO BREAKDOWN		WIRE DIA.0.5mm, LOADING WEIGHT 0.5KG FOR 10±1 SECONDS. WIRE DIA.0.6mm, LOADING WEIGHT 1.0KG FOR 10±1 SECONDS
STRENGTH	BENDING STRENGTH: NO BREAKDOWN		WIRE DIA.0.5mm, LOADING WEIGHT 0.25 KG. WIRE DIA.0.6mm, LOAIDNG WEIGHT 0.5 KG. (BENDING BACK AND FORTH 90 DEGREE TWICE)

POE-D02-00-E-14

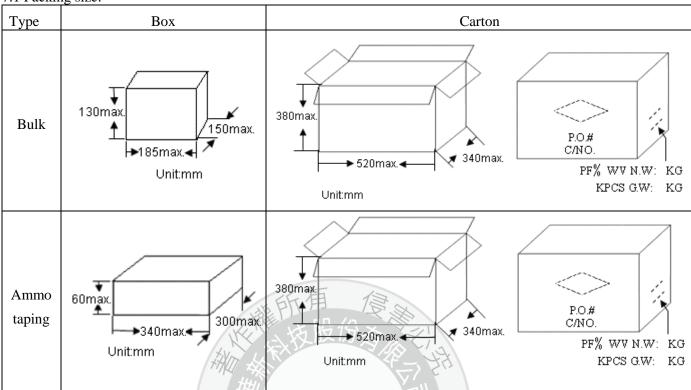
Ver: 14 Page: 10 of 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
TEMPERATURE	TEMPERTURE COEFFICIENT: SL: +350 ~ -1000PPM/°C	ACCORDING TO STEP 1 TO 5 IN ORDER, MEASURED CAPACITANCE WHEN TEMPERATURE REACH BALANCE AND TEMPERATURE COEFFICIENT SHALL BE CALCULATED ON THE FOLLOWING FORMULA: PPM/°C =(C2-C1)×10E6/C1(T2-T1) STEP 1,3,5: 25 °C STEP 4: 85 °C STEP 2: CH:-25 °C; SL:20 °C NOTE: C1 = CAPACITANCE AS STEP 3 C2 = CAPACITANCE AS STEP 2 OR 4 T1 = TEMPERATURE AS STEP 3 T2 = TEMPERATURE AS STEP 2 OR 4
CHARACTERISTIC		ACCORDING TO ABOVE STEP 1,3 & 5, CAPACITANCE TOLERANCE SHALL BE CALCULATED ON THE FOLLOWING FORMULA: △C%=(G - S)/C1 NOTE: G = GREATEST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 S = LEAST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 C1 = CAPACITANCE AS STEP 3
SOLDERING HEAT RESISTANCE	APPEARANCE: NO ABNORMALITIES CAP.CHANGE: SL WITHIN ±2.5% OR ±0.25PF, WHICHEVER IS LARGE. WITHSTAND VOLTAGE: (BETWEEN TERMINALS)	LEAD WIRE OR TERMINALS SHALL IMMERSE UP TO 2.0 M/M FORM BODY. INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE: 260(+5/-0)°C FOR 5~10 SECONDS. THEN LEAVE AT STANDARD TEST CONDITIONS FOR 24±2 HOURS, THEN MEASURED. **WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX. SOLDERING TIME: 3.5 SEC. MAX.
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 75% OF THE CIRCUMFERENTIAL DIRECTION.	TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE 245±5°C AND DIPPING TIME 5±0.5 SECONDS FLUX: WEIGHT RATIO OF POSIN 25%

POE-D02-00-E-14

Ver: 14 Page: 11 of 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE	
	APPEARANCE: NO ABNORMALITIES CAP.CHANGE: SL		
HUMIDITY CHARACTERISTIC (STABLE SITUATION)	WITHIN ±5% OR ±0.5PF, WHICHEVER IS LARGE. Q FACTOR: SL LESS THAN 10PF => Q \geq 200 + 10 × C MORE THAN 10PF AND LESS THAN 30PF => Q \geq 275 +5 × C/2 MORE THAN 30PF => Q \geq 350	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT $40\pm2^{\circ}$ C FOR 500(+24/-0) HOURS. THEN DRIED FOR $1\sim2$ HOURS AND MEASURED.	
	INSULATION RESISTANCE: 1000MΩ MIN.		
HUMIDITY LOADING	APPEARANCE: NO ABNORAMLITIES CAP.CHANGE: SL WITHIN $\pm 7.5\%$ OR ± 0.75 PF, WHICHEVER IS LARGE. Q FACTOR: SL LESS THAN 30 PF => Q $\geq 100 + 10 \times \text{C/3}$ MORE THAN 30 PF => Q ≥ 200 INSULATION RESISTANCE:	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 ~ 95% AT 40 ± 2°C FOR 500(+24/-0) HOURS WITH RATED VOLTAGE APPLIED WITH 50mA MAX. THEN DRIED FOR 1~2 HOURS AND MEASURED.	
	500 MΩ MIN PASSIVE SYSTEM	ALLTANCE	
	APPEARANCE: NO ABNORMALITIES CAP.CHANGE: WITHIN ±3% OR ±0.3PF, WHICHEVER IS LARGE.	V COTO HIRE	
HIGH TEMPERATURE LOADING	Q FACTOR : SL : LESS THAN 10PF ==> $Q \ge 200 + 10 \times C$ MORE THAN 10PF AND LESS THAN 30PF ==> $Q \ge 275 + 5 \times C/2$ MORE THAN 30PF ==> $Q \ge 350$	150% RATED VOLTAGE WITH 50mA max. FOR 1000(+48/-0) HOURS AT 125±3℃ AND THEN DRIED FOR 1~2 HOURS AND MEASURED.	
	INSULATION RESISTANCE: $1000~\text{M}\Omega$ MIN.		



POE-D02-00-E-14

Ver: 14 Page: 12 of 16

7. Packing Baggage:

7.1 Packing size:

7.2 Packing quantity:

Packing type	The code of 14th to15th in SAP P/N	MPQ (Kpcs/Box)
	AF	1°chn
Taping	AM	0.5

Packing type	MPQ (Kpcs/Bag)
Bulk	1

POE-D02-00-E-14

Ver: 14 Page: 13 of 16

8. Notices:

※Application: DC or Low frequency High Voltage circuits.

As coupling and decoupling capacitors for such application where higher losses and a reduced capacitance stability are required.

8.1 Operating Voltage:

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage
Positional measurement	V0-p	V0-p	Vp-p

8.2 Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20 °C at an atmosphere temperature of 25 °C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

8.3 Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

8.4 Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.5 Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

POE-D02-00-E-14

Ver: 14 Page: 14 of 16

8.6 Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.7 Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

8.8 List of substances that affect the insulation strength of coating:

Epoxy resin solvent

Category	Model			
Ketone	Acetone Butanone Cyclohexa		Cyclohexanone	
Esters	Ethyl acetate	Dibutyl phthalate		
Chlorinated hydrocarbons	Dichloromethane			

Epoxy resin thinner

Epoxy resin thinner				
Category		Model		
G.	Ç.	HK-66 (Alkyl glycidyl et	her)	
	10 x	501 (Butyl glycidyl ether))	
	Simple function group	690 (Phenyl Glycidyl Ether)		
17	Sho logy C	AGE (C12-14Aliphatic P	olyalcohol Glycidyl Ether)	
	692 (Benzyl Glycidyl Ether)		er)	
Reactive diluentactivated thinner	STANDED OF CORPORA	D-678 (Neopentyl glycol diglycidyl ether)		
		622 (1,4-Butanediol digly	cidyl ether)	
	Two functional groups	669 (Ethylene glycol digl	ycidyl ether)	
	Two functional groups	X-632 (Polypropylene gly	col diglycidyl ether)	
		X-652 (1,6-Hexadiol diglycidyl ether)		
		D-691Epoxypropane o-m	ethylphenyl ether	
		Anhydrous ethanol	Toluene	
		Ethyl acetate	Dimethylbenzene	
Non-activated thinner		Dimethyl formamide	Butyl acetate	
		Acetone	Styrene	
		Polyol	Benzyl alcohol	

Note: The above substances should not contact the coating of the product body, otherwise it will affect the insulation strength of the product

8.9 Rating

Capacitance change of capacitor

I. Class 1 series (Temp. Char. SL)

Capacitance might change a little depending on the surrounding temperature or an applied voltage.

Please contact us if you intend to use this product in a strict time constant circuit.

POE-D02-00-E-14

Ver: 14 Page: 15 of 16

9. Soldering Recommendation:

9.1 Wave Soldering Profile:

- Temperature conditions of the flow is recommended as shown in the chart
- Must implement the pre-heat
- Maximum peak flow temperature is recommended 265°C
- Time "T" implement in the chart recommended within 20 sec. it temperature exceed 200°C
- Take care with the flow solder not to touch the capacitor body directly at mounting

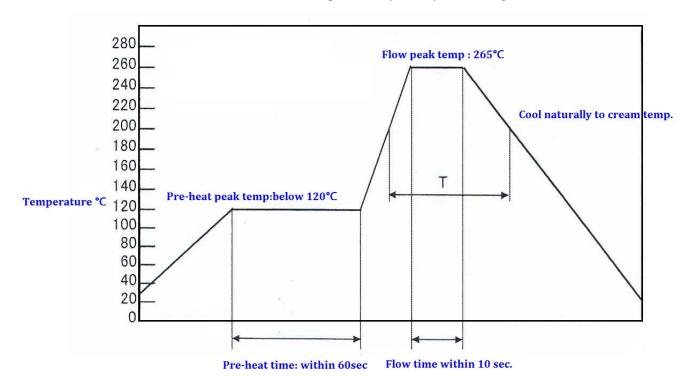


Chart to show flow recommended temp

9.2 Recommended Reworking Conditions with Soldering Iron:

- Temperature of iron-tip: 400 degrees C. max.
- Soldering iron wattage: 50W max.
- Soldering time: 3.5 sec. max.
- Distance from coating body: 2 mm (min.)

9.3 Reflow-Soldering: Lead Ceramic Cap. should not be soldered by reflow-soldering.

POE-D02-00-E-14

Ver: 14 Page: 16 of 16

10.Drawing of internal structure and material list:

Remarks:

No.	Part name	Material	Model/Type	Component
		PASSI	1.EF-150C	Epoxy resin, Pigment
1	Ingulation Coating	Epoxy polymer	2.EF-150(HF)	(Blue / UL 94 V-0 /)
1	Insulation Coating		3.PCE-210	The minimum thickness of coating
			2.PCE-300(HF)	(reinforced insulation) is 0.4mm
2	Dielectric Element	Ceramic	nologsico	SrCO3, TiO2, Bi2O3, CaCO3
3	Solder	Tin-silver	Sn96.5-Ag3-Cu0.5	Sn96.5-Ag3-Cu0.5
4	F1 / 1		1.SP-160PL	Silver \ Glass frit
4	4 Electrodes	Ag	2.SP-260PL	Sliver \ Glass IIII
5	. T. 1	Tinned copper clad	0.55±0.05 mm	Substrate metal: Fe & Cu
3	Leads wire	steel wire		Surface plating: Sn 100%(3~7μm)

单击下面可查看定价,库存,交付和生命周期等信息

>>Walsin Technology(华新科技)