

# APPROVAL SHEET

# **WW12E, WW08E, WW06E**

±5%, ±1%

Thick film low ohm chip resistors

Size 1206, 0805, 0603

RoHS Exemption free and Halogen free

\*Contents in this sheet are subject to change without prior notice.



#### **FEATURE**

- 1. High power rating and low range
- 2. High reliability and stability
- 3. Suitable for current sensing of small mobile devices
- 4. RoHS compliant & Lead free
- 5. Low cost benefit

#### **APPLICATION**

- Game equipment
- Mobile phone
- Battery pack
- Power supply
- DSC
- HDD

#### **DESCRIPTION**

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

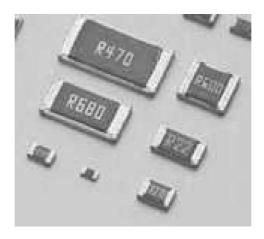



Fig 1. Construction of WWxxE



### **QUICK REFERENCE DATA**


| Item                                       | General Specification          |                 |                                               |  |  |
|--------------------------------------------|--------------------------------|-----------------|-----------------------------------------------|--|--|
| Series No.                                 | WW12E                          | WW08E           | WW06E                                         |  |  |
| Size code                                  | 1206 ( 3212 )                  | 0805 ( 2012 )   | 0603 ( 1608 )                                 |  |  |
| Resistance Tolerance                       | ±5%, ±1%                       | ±5%, ±1%        | ±5%, ±1%                                      |  |  |
| Resistance Range                           | $0.010\Omega \sim 0.976\Omega$ | 0.010Ω ~ 0.976Ω | 0.010Ω ~ 0.976Ω                               |  |  |
| TCR (ppm/°C)                               |                                |                 |                                               |  |  |
| $0.010\Omega \sim 0.018\Omega$             | +/- 1500 ppm                   | +/- 1500 ppm    | $0.010\Omega \sim 0.036\Omega$ : +/- 2000 ppm |  |  |
| $0.019\Omega \sim 0.047\Omega$             | +/- 1200 ppm                   | +/- 1200 ppm    | $0.037\Omega \sim 0.091\Omega$ : +/- 1200 ppm |  |  |
| $0.048\Omega \sim 0.091\Omega$             | +/- 1000 ppm                   | +/- 1000 ppm    | $0.093\Omega \sim 0.500\Omega$ : +/- 800 ppm  |  |  |
| $0.093\Omega \sim 0.360\Omega$             | +/- 600 ppm                    | +/- 600 ppm     | $0.510\Omega \sim 0.976\Omega$ : +/- 300 ppm  |  |  |
| $0.365\Omega \sim 0.500\Omega$             | +/- 300 ppm                    | +/- 300 ppm     |                                               |  |  |
| $0.510\Omega \sim 0.976\Omega$             | +/- 200 ppm                    | +/- 200 ppm     |                                               |  |  |
| Max. dissipation at T <sub>amb</sub> =70°C | 1/2 W                          | 1/4 W           | 1/10 W                                        |  |  |
| Max. Operation Current                     | 0.7 A ~ 7.0 A                  | 0.5 A ~ 5 A     | 0.3 A ~ 3.2 A                                 |  |  |
| Operation temperature                      | -55 ~ +155'C                   | -55 ~ +155'C    | -55 ~ +155'C                                  |  |  |

<sup>1.</sup> Max. Operation current : So called RCWC (Rated Continuous Working Current) is determined by  $RCWC = \sqrt{Rated\ Power\ /\ Resistance\ Value}$ 

# **MECHANICAL DATA (unit: mm)**

| Symbol | WW08E                               | WW12E       | WW06E       |  |
|--------|-------------------------------------|-------------|-------------|--|
| L      | L $2.00 \pm 0.10$ W $1.25 \pm 0.10$ |             | 1.60 ± 0.10 |  |
| W      |                                     |             | 0.80 ± 0.10 |  |
| Н      | 0.50 ± 0.15                         | 0.60 ± 0.15 | 0.45 ± 0.15 |  |
| С      | 0.40 ± 0.20                         | 0.50 ± 0.20 | 0.30 ± 0.10 |  |
| d      | d 0.40 ± 0.20                       |             | 0.30 ± 0.20 |  |





#### **MARKING**

For 1206/0805 size, each resistor is marked with a four-digit code on the protective coating to designate the nominal resistance value.

Example:  $R100 = 0.10\Omega$ 

 $R510 = 0.51\Omega$ 



For 0603, each resistor is marked with a three-digit code on the protective coating to designate the nominal resistance value.

The nominal resistance shall be marked in 3 digits (E24 and/or E96) and marked on over coat side.

•100m $\Omega$ ~910m $\Omega$ , E24 series: "R" followed by 2 significant digits if the 4th digit is "0"

(Example) "R22"  $\rightarrow$  220 [m $\Omega$ ]  $\rightarrow$  0.22 [ $\Omega$ ]

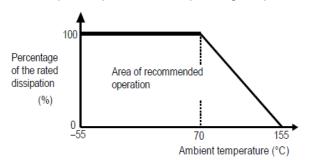
 100mΩ~976mΩ, E96 series: The 1st two digit codes are referring to the code on the table, the 3rd code is the index of resistance value: "Z"(10<sup>-3</sup>)

(Example) "25Z"  $\rightarrow$  178 [m $\Omega$ ]  $\rightarrow$  0.178[ $\Omega$ ] "34Z"  $\rightarrow$  221 [m $\Omega$ ]  $\rightarrow$  0.221[ $\Omega$ ]

•1mΩ-99mΩ: The 3rd code is the index of resistance value: "M".

"M" = "m", means1/1000

(Example) "75M"  $\rightarrow$  75 [m $\Omega$ ]  $\rightarrow$  0.75[ $\Omega$ ] "02M"  $\rightarrow$  2 [m $\Omega$ ]  $\rightarrow$  0.02[ $\Omega$ ]


#### 6.2.1 Symbol for E96 series of resistance value

| E96 | Symbol |
|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 100 | 01     | 162 | 21     | 261 | 41     | 422 | 61     | 681 | 81     |
| 102 | 02     | 165 | 22     | 267 | 42     | 432 | 62     | 698 | 82     |
| 105 | 03     | 169 | 23     | 274 | 43     | 442 | 63     | 715 | 83     |
| 107 | 04     | 174 | 24     | 280 | 44     | 453 | 64     | 732 | 84     |
| 110 | 05     | 178 | 25     | 287 | 45     | 464 | 65     | 750 | 85     |
| 113 | 06     | 182 | 26     | 294 | 46     | 475 | 66     | 768 | 86     |
| 115 | 07     | 187 | 27     | 301 | 47     | 487 | 67     | 787 | 87     |
| 118 | 08     | 191 | 28     | 309 | 48     | 499 | 68     | 806 | 88     |
| 121 | 09     | 196 | 29     | 316 | 49     | 511 | 69     | 825 | 89     |
| 124 | 10     | 200 | 30     | 324 | 50     | 523 | 70     | 845 | 90     |
| 127 | 11     | 205 | 31     | 332 | 51     | 536 | 71     | 866 | 91     |
| 130 | 12     | 210 | 32     | 340 | 52     | 549 | 72     | 887 | 92     |
| 133 | 13     | 215 | 33     | 348 | 53     | 562 | 73     | 909 | 93     |
| 137 | 14     | 221 | 34     | 357 | 54     | 576 | 74     | 931 | 94     |
| 140 | 15     | 226 | 35     | 365 | 55     | 590 | 75     | 953 | 95     |
| 143 | 16     | 232 | 36     | 374 | 56     | 604 | 76     | 976 | 96     |
| 147 | 17     | 237 | 37     | 388 | 57     | 619 | 77     |     |        |
| 150 | 18     | 243 | 38     | 392 | 58     | 634 | 78     |     |        |
| 154 | 19     | 249 | 39     | 402 | 59     | 649 | 79     |     |        |
| 158 | 20     | 255 | 40     | 412 | 60     | 665 | 80     |     |        |

#### **FUNCTIONAL DESCRIPTION**

# **De-rating curve**

The power that the resistor can dissipate depends on the operating temperature; see Fig.2





#### **SOLDERING CONDITION**

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 245°C during 3 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

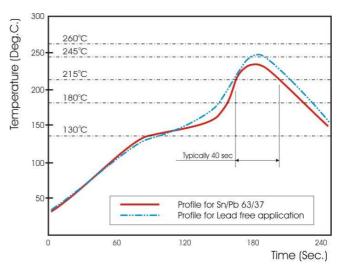



Fig 3. Infrared soldering profile for chip resistor

#### **CATALOGUE NUMBERS**

The resistors have a catalogue number starting with .

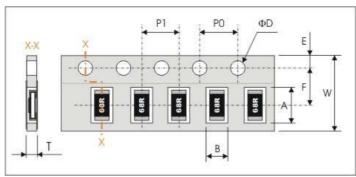
| WW08                       | E            | R050                                                                                                              | F         | Т                | L                |
|----------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------|
| Size code                  | Type code    | Resistance code                                                                                                   | Tolerance | Packaging code   | Termination code |
| WW08 : 0805                | E : Low cost | E96 +E24:                                                                                                         | J : ±5%   | T:7" Reel taping | L = Sn base      |
| WW12 : 1206<br>WW06 : 0603 |              | R is first digit followed by 3 significant digits. $0.010\Omega = R010$ $0.025\Omega = R025$ $0.100\Omega = R100$ | F:±1%     |                  | (lead free)      |

Reeled tape packaging

8mm width paper taping 4mm pitch, 5,000pcs per reel.



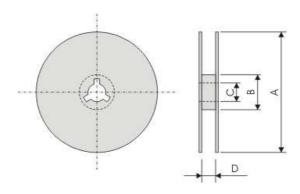
# **TEST AND REQUIREMENTS**


| TEST                                                   | PROCEDURE                                                                                                                                                                                             | REQUIREMENT                                   |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Temperature<br>Coefficient of<br>Resistance<br>( TCR ) | Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\!\!\times\!10^6~(\mathrm{ppm/^\circ C})$                                                                     | Test temperature +155°C As defined in P.3     |
|                                                        | $R_1$ : Resistance at reference temperature $R_2$ : Resistance at test temperature $t_1$ : 25°C                                                                                                       |                                               |
| Short time<br>overload ( STOL )<br>Sub-Clause 4.13     | Permanent resistance change after 2 second application of a current 2.5 times RCWC specified.                                                                                                         | $\Delta$ R/R max. ±2% no visible damage       |
| Resistance to soldering heat Sub-clause 4.18           | Un-mounted chips 10±0.5 seconds, 260±5°C                                                                                                                                                              | no visible damage $\Delta$ R/R max. $\pm 1\%$ |
| Solderability Sub-clause 4.17                          | Termination Sn base (lead free) : Un-mounted chip completely immersed in a lead free solder bath, 235°C±5°C, 2±0.5 sec                                                                                | good tinning (>95% covered) no visible damage |
| Temperature cycling Sub-clause 4.19                    | <ol> <li>30 minutes at -55°C±3°C,</li> <li>2~3 minutes at room temperature,</li> <li>30 minutes at +155°±3°C,</li> <li>2~3 minutes at room temperature,</li> <li>Total 5 continuous cycles</li> </ol> | no visible damage<br>ΔR/R max. ±1%            |
| Load life<br>(endurance)<br>Sub-clause 4.25.1          | 70±2°C, 1000 hours, loaded with rated current, 1.5 hours on and 0.5 hours off                                                                                                                         | ΔR/R max. ±3% no visible damage               |
| Load life in<br>Humidity<br>Sub-clause 4.24            | rated current applied 1.5hr ON, 0.5hr OFF at 40°C±2°C and 90~95% relative humidity, test period: 1000hours                                                                                            | $\Delta$ R/R max. $\pm 3\%$ no visible damage |
| Bending strength Sub-clause 4.33                       | Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 3 mm,                                                                                                                               | $\Delta$ R/R max. ±1% no visible damage       |
| Adhesion Sub-clause 4.32                               | 5N, 10±1s                                                                                                                                                                                             | No visible damage                             |
| Insulation resistance                                  | 0603/0805: 100Vdc, 1min<br>1206: 400Vdc, 1min                                                                                                                                                         | R > 10Gohm                                    |
| Dielectric<br>withstanding<br>voltage                  | 0603/0805: 100Vdc, 1min<br>1206: 400Vdc, 1min                                                                                                                                                         | No flash over, fire and breakdown             |



# **PACKAGING**

# **Paper Tape specifications**


# (unit: mm)



| Series No. | А         | В         | W         | F         | E         |
|------------|-----------|-----------|-----------|-----------|-----------|
| WW08E      | 2.40±0.20 | 1.65±0.20 | 8.00±0.20 | 3.50±0.05 | 1.75±0.10 |
| WW12E      | 3.60±0.20 | 2.00±0.15 | 8.00±0.20 | 3.50±0.05 | 1.75±0.10 |
| WW06E      | 1.90±0.20 | 1.10±0.20 | 8.00±0.20 | 3.50±0.05 | 1.75±0.10 |

| Series No. | P1        | P0        | ΦD                                    | Т         |
|------------|-----------|-----------|---------------------------------------|-----------|
| WW08E      | 4.00±0.10 | 4.00±0.10 | $\Phi$ 1.50 $^{+0.1}_{-0.0}$          | Max. 1.0  |
| WW12E      | 4.00±0.10 | 4.00±0.10 | $\Phi$ 1.50 $^{+0.1}_{-0.0}$          | Max. 1.0  |
| WW06E      | 4.00±0.10 | 4.00±0.10 | Φ1.50 <sup>+0.1</sup> <sub>-0.0</sub> | 0.65±0.05 |

# Reel dimensions



| Symbol      | Α             | В          | С        | D       |
|-------------|---------------|------------|----------|---------|
| (unit : mm) | Φ180 +0/ -1.5 | Φ60+1.0/-0 | 13.0±0.2 | 9.0+1.0 |

# 单击下面可查看定价,库存,交付和生命周期等信息

>>Walsin Technology(华新科技)