WAYØN

WEOS9110D

Thyristor Programmable Overvoltage Protector

Description

This device is especially designed to protect modern dual polarity supply rail ringing SLICs against overvoltages on the telephone line. Overvoltages can be caused by lightning, a.c. power contact and induction. Four separate protection structures are used; two positive and two negative to provide optimum protection during Metallic (Differential) and Longitudinal (Common Mode) protection conditions in both polarities. Dynamic protection performance is specified under typical international surge waveforms from Telcordia

GR-1089-CORE, ITU-T K.44 and YD/T 950.

SLIC Battery supplies respectively. This creates a protector operating at typically +1.4 V above +V_(BAT) and -1.4 V below -V_(BAT) under a.c. power induction and power contact conditions. The protector gate circuitry incorporates 4 separate buffer transistors designed to provide independent control for each protection element. The gate buffer transistors minimize supply regulation issues by reducing the gate current drawn to around 5 mA, while the high voltage base emitter structures eliminate the need for expensive reverse bias protection gate diodes.

Features

- High performance protection for SLICs with +ve and –ve battery supplies
- Wide -110V to +110V programming range
- Low gate triggering current
- ESD Immunity(HBM): JESD22 Class 3B, ≥8KV

Applications

- Regenerated POTS
- Access equipment
- Wireless local loop
- VOIP applications

SOP-8EIAJ (210 mil) Package (Top View)				
Pin #	Pin Name	Description		
1, 4	К	Connect to subscriber lines (Tip or Ring)		
2	G1	Connect to battery (-V(BAT))		
3	G2	Connect to battery (+V(BAT))		
6, 7	Ground	Connect ground		
5, 8	NC	Not connected		

SOP-8EIAJ

SOP-8EIAJ (210 mil) Package (Top View)

		_	
кЦ	¹ O	8	NC
G1 🖂	2	7	Ground
G2 🖂	3	6	Ground
к	4	5	NC

Wave Shape	Standard	IPPSM (A)	
(µ3) 2/10µs	GR-1089-CORE	100	
10/700µs	ITU-T K.20/21/45	45	
10/1000µs	GR-1089-CORE	30	

Rated for International Surge Wave Shapes

Absolute Maximum Ratings (T_A=25°C)

Rating	Symbol	Value	Unit	
Repetitive peak off-state voltage				
$V_{G1(Line)} = 0, V_{G2} \ge +5 V$	V _{DRM}	-120	V	
$V_{G2(Line)} = 0, V_{G1} \ge -5 V$		+120		
Non-repetitive peak impulse current (see Notes 1, 2, 3 and 4)				
2/10 μs (Telcordia GR-1089-CORE)	PPSM	±100	_	
5/310 μs (ITU-T K.20, K.21 & K.45, K.44 open-circuit voltage wave shape 10/700 $\mu s)$		±45	A	
10/1000 μs (Telcordia GR-1089-CORE)		±30		
Non repetitive peak on-state current, 50Hz / 60Hz (see Notes 1, 2, 3 and 5)				
0.2s	I _{TSM}	9.0		
1s		5.0	A	
900s		1.7		
Maximum negative battery supply voltage	V _{G1M}	-110	V	
Maximum positive battery supply voltage	V _{G2M}	+110	V	
Maximum differential battery supply voltage		220	V	
Junction temperature	TJ	-40 to +150	°C	
Storage temperature range	T _{stg}	-55 to +150	°C	

NOTES:

- Initially the device must be in thermal equilibrium with T_J = 25 °C. The surge may be repeated after the device returns to its initial conditions.
- 2. The rated current values may be applied to either of the Line to Ground terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the Ground terminal current will be twice the rated current value of a single terminal pair).
- 3. Rated currents only apply if pins 6 & 7 (Ground) are connected together.
- 4. Applies for the following bias conditions: V_{G1} = -20 V to -110 V, V_{G2} = 0 V to +110 V.
- 5. EIA/JESD51-2 environment and EIA/JESD51-7 high effective thermal conductivity test board (multi-layer) connected with 0.6 mm printed wiring track widths.

Electrical Characteristics for any Section ,T_A=25°C (Unless Otherwise Noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ID	Off-state current	$V_D = V_{DRM}, V_{G1(Line)} = 0, V_{G2} \ge +5 V$ $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$ $V_D = V_{DRM}, V_{G2(Line)} = 0, V_{G1} \ge -5 V$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$			-5 -50 +5	μΑ
I _{G1(Line)}	Negative-gate Leakage current	V _{G1(Line)} = -220V			-5	μA
I _{G2(Line)}	Positive-gate Leakage current	V _{G2(Line)} = +220V			+5	μA
$V_{\text{G1L}(\text{BO})}$	Gate-Line impulse breakover voltage	V _{G1} =-100V, I _T =-100A (see Note 6) 2/10µs V _{G1} =-100V, I _T =-30A 10/100µs			-15 -11	V
$V_{\text{G2L(BO)}}$	Gate-Line impulse breakover voltage	$V_{\rm G2}{=}+100V, \ I_T{=}+100A \ (see \ Note \ 6) \ 2/10 \mu s \\ V_{\rm G2}{=}+100V, \ I_T{=}+30A \ 10/100 \mu s$			+15 +11	V
IH-	Negative holding current	V _{G1} =-60V, I _T =-1A, di/dt=1A/ms	-150			mA
I _{G1T}	Negative-gate trigger current	I _T =-5A, tp(g)≥20µs, V _{G1} =-60V			+5	mA
I _{G2T}	Positive-gate trigger current	I _T =+5A, tp(g)≥20μs, V _{G2} =+60V			-5	mA
Co	Line-ground off-state capacitance	f=1MHz,V _D =-3V, G1 & G2 open circuit		41		pF
R _{0JA}	Junction to ambient thermal resistance	EIA/JESD51-7 PCB, EIA/JESD51-2 Environment, PTOT = 4 W(See Note 7)		55		°C /W

Thyristor Programmable Overvoltage Protector

NOTES:

- 6. Voltage measurements should be made with an oscilloscope with limited bandwidth (20 MHz) to avoid high frequency noise.
- 7. EIA/JESD51-7 high effective thermal conductivity test board (multi-layer) connected with 0.6 mm printed wiring track widths.

Typical Characteristics

Vs

Thermal Information

NON-REPETITIVE PEAK ON-STATE CURRENT

vs

CURRENT DURATION

Figure 3.

Product Dimensions

©2019 WAYON Corporation

www.way-on.com

Part Numbering System and Marking

Symmetry Voltage Rating Series No. **Electrical OverStress**

Marking:

Package Information

Device	Package	Carrier	Quantity
WEOS9110D	SOP-8EIAJ	Tape & Reel	2,000pcs/reel

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 021-68969993 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

IJIAY 🔊 🔪 🖲 is registered trademarks of Wayon Corporation.

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

单击下面可查看定价,库存,交付和生命周期等信息

>>WAY-ON(维安)