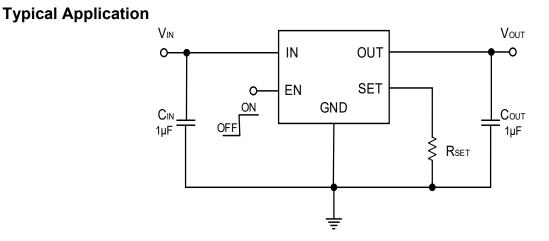
Low Loss Adjustable Current Limited Load Switch

General Description

WAYON

The WP25P041T5-B is current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from 2.5V to 5.2V, making it ideal for both 3.3V and 5V systems. An integrated currentlimiting circuit protects the input supply against large currents which may cause the supply to fall out of regulation. The WP25P041T5-B is also protected from thermal overload which limits power dissipation and junction temperatures. It can be used to control load that requires from 75mA to 400mA. Current limit threshold is programmed with a resistor from SET to ground. The guiescent supply current in active mode is only 100µA. In shutdown mode, the supply current decreases to less than 1µA. The device has an output over-voltage protection, when this condition stays on for longer than 15µs, the output is disabled and shut down.

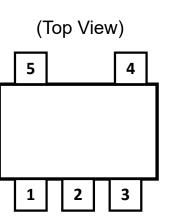
The WP25P041T5-B is available in Pb-free packages and is specified over the -40°C to +85°C


ambient temperature range.

Features

- Input Voltage Range: 2.5V to 5.2V
- Programmable Current Limit (75mA to 400mA)
- Reverse Current Blocking
- Low Quiescent Current: 100µA (Typ)
- 1µA Max Shutdown Supply Current
- 15µs Short Circuit Response Typically
- Built-in Pull-up Resistor for EN Pin
- Output Over-voltage Protection
- Automatic Output Discharge at Shutdown
- Under-Voltage Lockout
- Thermal Shutdown
- 2kV ESD Rating
- Ambient Temperature Range: -40°C to +85°C

Applications


- Laptop/Desktop Computers and Netbooks
- Smart Phones, e-Readers
- LCD TVs and Monitors
- Set-Top-Boxes, Residential Gateways
- Printers, Docking Stations, HUBs

Note: Tantalum or Aluminum Electrolytic capacitors (CIN and COUT) may be required for USB applications

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function	
1	OUT	Power output.	
2	GND	Ground pin.	
3	SET	Current limit programming pin, with a resistor from ISET to ground.	
4	EN	Enable input, High enable.	
5	IN	Power supply input.	

Absolute Maximum Ratings

Parameter	Rating	Unit
IN, EN, SET Voltage	-0.3 to 6	V
OUT Voltage	-0.3 to V _{IN} + 0.3	V
OUT Current	ADJ	А
Power Dissipation	400	mW
Package Thermal Resistance(θ_{JA})	250	°C/W
Operating Junction Temperature	-40 to 125	°C
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

www.way-on.com

WAYON

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{IN}	Input Voltage Range		2.5		5.2	V
Ishdn	Shutdown Input Current	Disabled, OUT floating or shorted to ground		0.3	1	μA
lq	Quiescent Supply Current	Enabled, I _{OUT} = 0A		100	140	μA
R _{DS(ON)}	Switch on-resistance	V _{IN} = 5V, I _{OUT} = 0.2A	100	250	350	mΩ
		V_{IN} = 5V, V_{OUT} = 4.5V, R_{SET} =12.7k Ω	2.5 100 320 240 150	400	480	mA
		300	360	mA		
$\begin{tabular}{ c c c c } \hline I_Q & Quiescent Supply Current \\ \hline R_{DS(ON)} & Switch on-resistance & V_{IN} = 5' \\ \hline V_{IN} =$	V_{IN} = 5V, V_{OUT} = 4.5V, R_{SET} =24.9k Ω	150	200	250	mA	
		VIN = 5V, VOUT = 4.5V, RSET=64.9kΩ	55	75	95	mA
Іімт		VIN = 5V, VOUT = 4.5V, open RSET	320	400	480	mA
·LIVIT		$V_{IN} = 5V$, $V_{OUT} = 0V$, $R_{SET} = 12.7 k\Omega$	295	430	465	mA
	Current Limit	V _{IN} = 5V, V _{OUT} =0V, R _{SET} =16.9kΩ	208	270	332	mA
	(short circuit)	V_{IN} = 5V, V_{OUT} =0V, R_{SET} =24.9k Ω	115	170	225	mA
		VIN = 5V, VOUT = 0V, RSET=64.9kΩ	18	40	62	mA
		V _{IN} = 5V, V _{OUT} = 0V, open R _{SET}	310	400	490	mA
VIL		Note 1			0.5	V
Vін	1 0 0	Note 1	1.5			V
lonur	EN Input lookage	$V_{EN} = 5V$		0.01	1	μA
ISINK		V _{EN} =0V	-2	-0.25		μA
Vuvlo	Input UVLO Threshold		1.4	1.8	2.2	V
VUVLOHys	Input UVLO Hysteresis			0.1		V
IREV	Reverse Leakage Current	V _{IN} = 0V, V _{OUT} = 5V, I _{REV} at V _{IN}		0.01	0.1	μA
IROCP		V _{IN} = 5.0V, V _{OUT} = 5.2V		0.2	0.25	А
Ttrig	current trigger to	Note 2	0.5	0.7	1.0	ms
Vovp		Note 3	5.3		5.6	V
Rdis	0			400		Ω
TSHDN	Thermal Shutdown Temperature	$V_{IN} = 5V$		150		°C

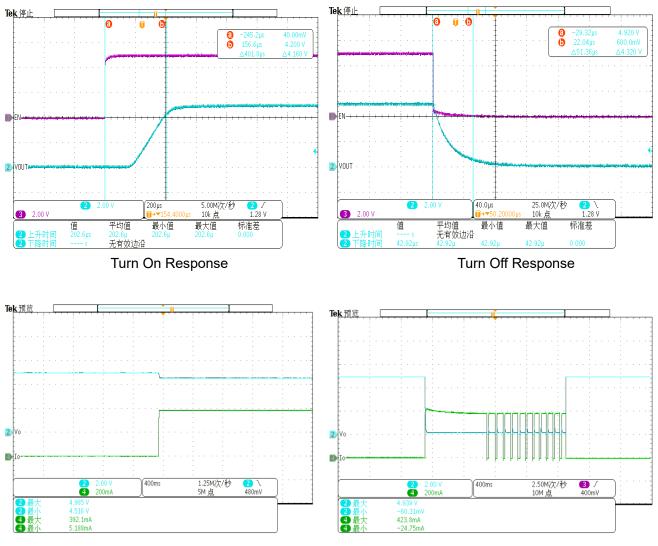
Electrical Characteristics (VIN=+5.0V, TA=25°C, unless otherwise specified.)

March 2021 – Rev1.2

www.way-on.com

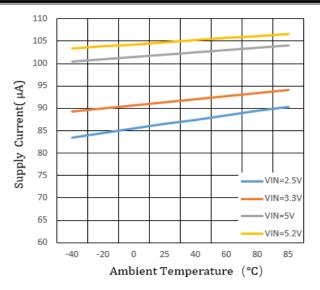
Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
Thys	Thermal Shutdown Hysteresis	V _{IN} = 5V		20		°C
T _R	Output turn-on rise time	V _{IN} =5V, C∟=1μF, R∟=20Ω		0.5		ms
ESD	Human Body Model ESD			2000		V
HBM	Protection			2000		v

Note 1: When EN pin is floating, the chip is enabled.

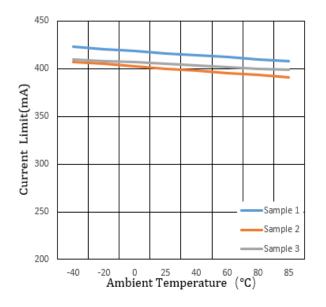

Note 2: When reverse current triggers at IROCP = 0.20A, the reverse current is continuously clamped at IROCP for 0.7ms deglitch time until MOSFET is turned off.

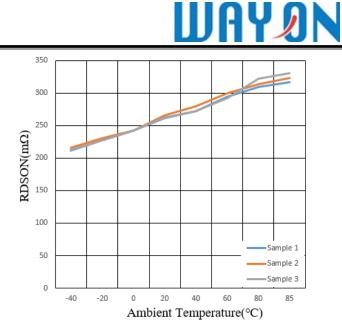
Note 3: During output over-voltage protection, the output draws approximately 60µA current.

Typical Performance Characteristics

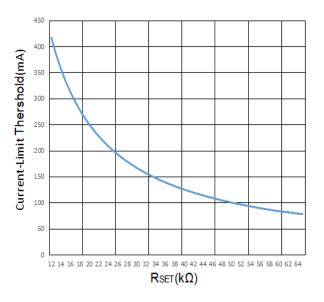

(TA=25°C, unless otherwise noted)

AYDN




 $\label{eq:overload} \textit{Overload Current-limit} \quad (\textit{open } R_{SET})$

Short Current Response & Thermal Shutdown



Quiescent Supply Current vs. Ambient Temperature

Switch On-Resistance vs. Ambient Temperature

Current-Limit Threshold vs. Ambient Temperature (open Rset) Current-Limit Threshold vs. Rset

WAYON

Operation

WP25P041T5-B is an integrated power switch with a low $R_{DS(ON)}$ P-channel MOSFET, internal gate drive circuit. When the WP25P041T5-B turns on, it can deliver up to 250mA continuous current to load. When the device is active, if there is no load, the device only consumes 100µA supply current, which makes the device suitable for battery powered applications.

Power Supply Considerations

A 0.1 μ F to 1 μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input and minimize the input voltage droops. Additionally, bypassing the output with a 0.1 μ F to 1 μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

Power Dissipation and Junction Temperature

The low on-resistance on the P-channel MOSFET allows the small surface-mount packages to pass large currents. It is good design practice to check power dissipation and junction temperature for each application. Begin by determining the RDS(ON) of the P-channel MOSFET relative to the input voltage and operating temperature. Using the highest operating ambient temperature of interest and RDS(ON), the power dissipation per switch can be calculated by:

$$P_D = R_{DS(ON)} \times I^2$$

Finally, calculate the junction temperature:

$$T_J = P_D x R_{\theta JA} + T_A$$

Where:

T_A= Ambient temperature

R_{0JA} = Thermal resistance

P_D = Total power dissipation

Compare the calculated junction temperature with the maximum junction temperature which is 125°C. If they are within degrees, either the maximum load current needs to be

reduced or another package option will be required.

Over Current

A sense FET is employed to check for overcurrent conditions. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. WP25P041T5-B will limit the current until the overload condition is removed or the device begins to thermal cycle.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before V_{IN} has been applied. The WP25P041T5-B senses the short and immediately switches into a constant-current output.

In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload occurs, high currents may flow for a short period of time before the currentlimit circuit can react. After the current-limit circuit reached the over current trip threshold, the device switches into constantcurrent mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded. The WP25P041T5-B is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

Thermal Protection

Thermal protection prevents damage to the IC when heavyoverload or short-circuit faults are present for extended periods of time. The WP25P041T5-B implements a thermal sensing to monitor the operating junction temperature of the power distribution switch. In an over current or short-circuit condition, the junction temperature rises due to excessive power dissipation. Once the die temperature rises to approximately 150° C due to over current conditions, the internal thermal sense circuitry turns the power switch off,

thus preventing the power switch from damage. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20° C, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

Reverse-Current Protection

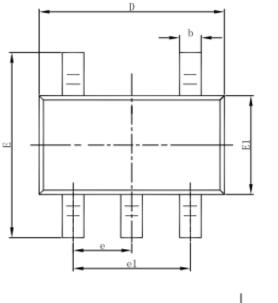
In some applications, such as USB port. The USB specification does not allow an output device to source current back into the USB port. A reverse current limit feature is implemented in the WP25P041T5-B to limit such back currents. Reverse current limit is always active in WP25P041T5-B. The reverse current is limited to half of the constant-current and when the fault exists for more than 700µs, output device is disabled and shut down. This is called the "Debounce time from reverse current trigger to MOSFET turn off".

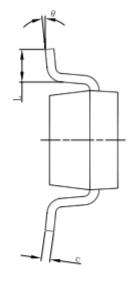
Over-Voltage Protection

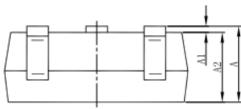
The device has an output over-voltage protection that triggers when the output voltage reaches 5.3V (MIN). When this fault condition stays on for longer than 15µs, (This is called the "Debounce time from output over voltage to MOSFET turn off") output device is disabled and shut down.

Current Limiting Setting

Current limit is programmable to protect the power source from over current and short circuit conditions. Connect the closest 1% resistor R_{SET} from SET pin to GND to program the current limit:


$I_{\text{LIM}(A)} = 5000 / R_{\text{SET}}(\Omega)$


The minimum current limit is 75mA. Current limit beyond 400mA is not recommended.


When $R_{SET} = \infty$ (SET Pin is floating), the current limit is 320mA ~ 480mA.

Package Information

CVMDOI	DIMENSIONS IN MILLIMETERS			
SYMBOL	MIN	MAX		
Α	1.000	1.350		
A1	0.000	0.150		
A2	1.000	1.200		
b	0.300	0.500		
с	0.100	0.200		
D	2.820	3.020		
E1	1.500	1.700		
Е	2.600	3.000		
е	0.950(BSC)			
e1	1.800	2.000		
L	0.300	0.600		
θ	0°	8°		

Ordering Information

Part Number	Current Limit	Package	Packing Quantity	Marking*
WP25P041T5-B	ADJ	SOT23-5	3k/Reel	5P041 BXXXX

*XXXX is variable.

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201202

Tel: 86-21-68960674 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

URYAN is registered trademark of Wayon Corporation.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.

Users should verify actual device performance in their specific applications.

单击下面可查看定价,库存,交付和生命周期等信息

>>WAY-ON(维安)