

PRODUCT DESCRIPTION

The LMV321 (single), LMV358 (dual) and LMV324 (quad) are general purpose, low offset, high frequency response and micro power operational amplifiers .With an excellent bandwidth of 1MHz, a slew rate of $0.8 \text{ V/}\mu\text{s}$, and a quiescent current of $85\mu\text{A}$ per amplifier at 5V, the LMV321/358/324 family can be designed into a wide range of applications. The LMV321/358/324 op-amps are designed to provide optimal performance in low voltage and low power systems. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.0mV. These parts provide rail-to-rail output swing into heavy loads. The LMV321/358/324 family is specified for single or dual power supplies of +2.1V to +6.0V. All models are specified over the extended industrial temperature range of $-40\,^{\circ}\text{C}$ to $+125\,^{\circ}\text{C}$.

FEATURES

- General Purpose 1.2 MHz Amplifiers, Low Cost
- High Slew Rate: 0.8 V/µs
- Low Offset Voltage:3.0 mV Maximum
- Low Power:85 µA per Amplifier Supply Current
- Unit Gain Stable
- Rail-to-Rail Input and Output
- Operating Power Supply: +2.1 V to +6.0 V
- Operating Temperature Range: -40 °C to +125 °C
- ESD Rating: HBM 4kV, CDM 2kV

APPLICATIONS

- Smoke/Gas/Environment Sensors
- Audio Outputs
- Battery and Power Supply Control
- Portable Equipments and Mobile Devices
- Active Filters
- Sensor Interfaces
- Battery-Powered Instrumentation
- Medical instrumentation

Pin Configuration

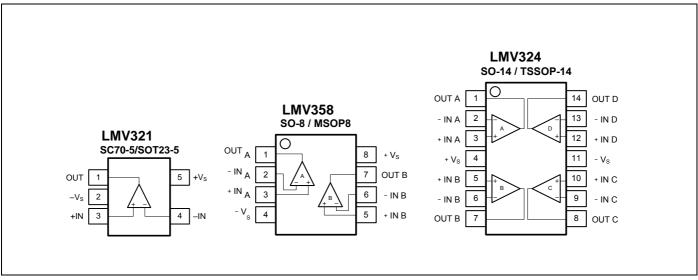


Figure 1. Pin Assignment Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	10V
Input Common Mode Voltage Range	
(-V _S) - 0.5V to	o (+V _S) + 0.5V
Storage Temperature Range6	5°C to +150°C
Junction Temperature	+160°C
Lead Temperature (Soldering 10sec)	+260°C
ESD Susceptibility	
HBM	5000V
MM	400V
CDM	2000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

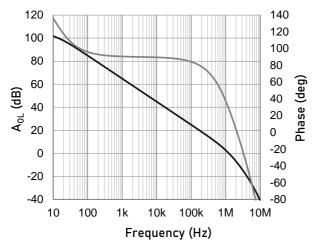
Ordering Information

Type Number	Package Name	Package Quantity	Marking Code
LMV321M5X-W	S0T23-5L	Tape and Reel, 3000	V321, A13
LMV321M7X-W	SC70-5L	Tape and Reel, 3000	V321,A12
LMV358IDR-W	SOIC-8L	Tape and Reel, 2500	LMV358
LMV358IDGKR-W	MSOP-8L	Tape and Reel, 3000	V358
LMV324IDR-W	SOIC-14L	Tape and Reel, 2500	LMV324

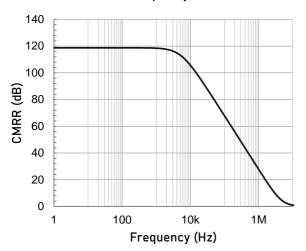
Electrical Characteristics

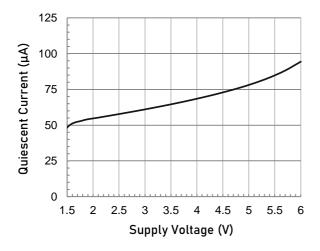
 $V_S = 5.0V$, $T_A = +25^{\circ}C$, $V_{CM} = V_S/2$, $V_O = V_S/2$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40$ to +125 °C.

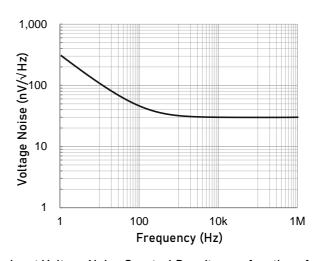
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
OFFSET V	OLTAGE					
V _{os}	Input offset voltage			± 0.7	±3.0	mV
V _{os} TC	Offset voltage drift	T _A = -40 to +125 °C		±1	3.5	μV/°С
PSRR Power supply	Power supply	V_{S} = 2.0 to 5.5 V, V_{CM} < V_{S+} – 2V	80	110		4D
FORK	rejection ratio	$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	75			- dB
INPUT BIA	AS CURRENT					
				5	50	
I_B	Input bias current	T _A = +85 °C			200	рA
		T _A = +125 °C			2000	
l _{os}	Input offset current			10	50	pА
NOISE						
V_n	Input voltage noise	f = 0.1 to 10 Hz		6		μV _{P-P}
_	Input voltage noise	f = 10 kHz		27		nV/√Hz
e _n	density	f = 1 kHz		30		1110/1117
I _n	Input current noise density	f = 1 kHz		5		fA/√Hz
INPUT VO						
V _{CM}	Common-mode voltage range		V _{S-} -0.1		V _{S+} +0.1	V
Common-mode	$V_S = 5.5 \text{ V}, V_{CM} = -0.1 \text{ to } 5.6 \text{ V}$	70	83			
	V _{CM} = 0 to 5.3 V, T _A = -40 to +125 °C	65				
CMRR	rejection ratio	$V_S = 2.0 \text{ V}, V_{CM} = -0.1 \text{ to } 2.1 \text{ V}$	65	77		dB
		V _{CM} = 0 to 2.1 V, T _A = -40 to +125 °C	60]
INPUT IM	PEDANCE					
		Differential		2.0		
CIN	Input capacitance	Common mode		3.5		- pF
OPEN-LO	OP GAIN					
		$R_L = 25 \text{ k}\Omega, V_0 = 0.05 \text{ to } 3.5 \text{ V}$	90	105		
	Open-loop voltage	T _A = -40 to +125 °C	85] ,,
A _{VOL}	gain	$R_L = 2 k\Omega$, $V_0 = 0.15 to 3.5 V$	85	100		dB
		T _A = −40 to +125 °C	80			1
FREQUEN	ICY RESPONSE					
GBW	Gain bandwidth product			1.2		MHz
SR	Slew rate	G = +1, C _L = 100 pF, V ₀ = 1.5 to 3.5 V		1.0		V/µs
THD+N	Total harmonic distortion + noise	G = +1, f = 1 kHz, V ₀ = 1 V _{RMS}		0.003		%
t _s	Settling time	To 0.1%, G = +1, 1V step		1.5		μs
J		To 0.01%, G = +1, 1V step		1.8		
t _{OR}	Overload recovery time	To 0.1%, V _{IN} * Gain > V _S		2.5		μs

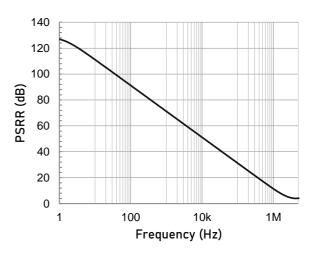


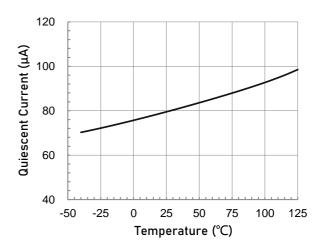
Electrical Characteristics


OUTPL	IT					
V _{OH} High output voltage swing	High output voltage	R _L = 50 kΩ	V _{S+} -6	V _{S+} -3		m\/
	R _L = 2 kΩ	V _{S+} -100	V _{S+} -65		mV	
V	Low output voltage	$R_L = 50 \text{ k}\Omega$		V _{s-} +2	V _{s-} +4	mV
V OL	V _{oL} swing	R _L = 2 kΩ		V _{S-} +43	V _{s-} +65	1117
1	Short-circuit current	Source current through 10Ω		40		mA
I _{SC} Snort-circuit current	Sink current through 10Ω		50		IIIA	
POWE	R SUPPLY					
V _s	Operating supply voltage		1.8		5.5	V
	Quiescent current			85	120	
la (per amplifier)	T _A = -40 to +125 °C			150	μΑ	
THERM	MAL CHARACTERISTICS					
	Operating					°C


At T_A = +25°C, V_{CM} = $V_S/2$, and R_L = 10k Ω connected to $V_S/2$, unless otherwise noted.

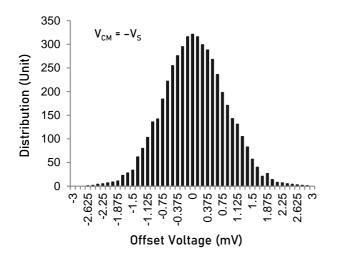

Open-loop Gain and Phase as a function of Frequency.


Common-mode Rejection Ratio as a function of Frequency.

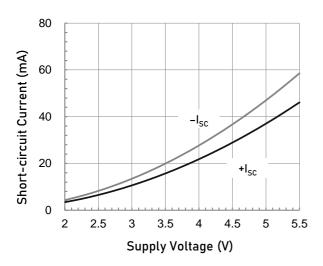

Quiescent Current as a function of Supply Voltage.

Input Voltage Noise Spectral Density as a function of Frequency.

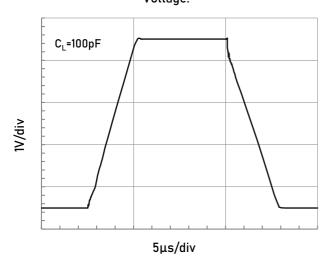
Power Supply Rejection Ratio as a function of Frequency.

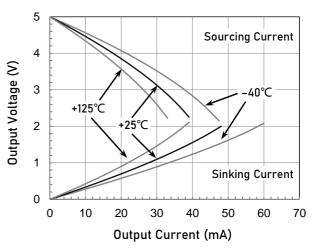


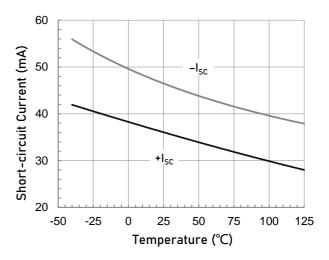
Quiescent Current as a function of Temperature.

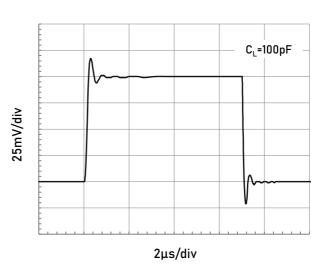


i ypicai Periormance characteristics


At T_A = +25°C, V_{CM} = $V_S/2$, and R_L = 10k Ω connected to $V_S/2$, unless otherwise noted.


Offset Voltage Production Distribution


Short-circuit Current as a function of Supply Voltage.


Large Signal Step Response.

Output Voltage Swing as a function of Output Current.

Short-circuit Current as a function of Temperature.

Small Signal Step Response.

Application Note

Size

LMV3XX family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the LMV3XX family packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

LMV3XX family series operates from a single 2.1V to 6.0V supply or dual $\pm 1.0V$ to $\pm 3V$ supplies.For best performance, a 0.1 μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1 μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 85µA per channel) of LMV3XX family will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

LMV3XX family operates under wide input supply voltage (2.1V to 6V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure

operation throughout the single Li-lon battery lifetime.

Rail-to-Rail Input

The input common-mode range of LMV3XX family extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of LMV3XX family can typically swing to less than 10mV from supply rail in light resistive loads (> $100k\Omega$), and 60mV of supply rail in moderate resistive loads ($10k\Omega$).

Capacitive Load Tolerance

The LMV3XX family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2 shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

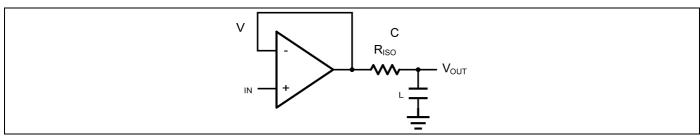


Figure 2 Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

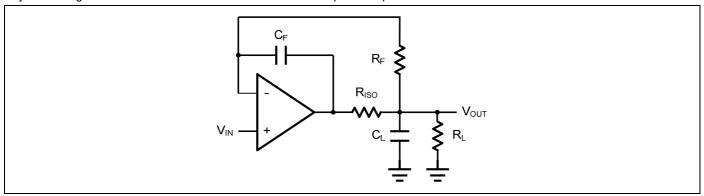


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Instrumentation Amplifier

The triple LMV3XX family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

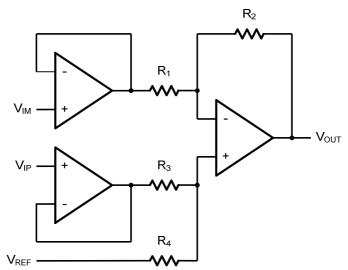


Figure 6. Instrument Amplifier

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using LMV3XX family.

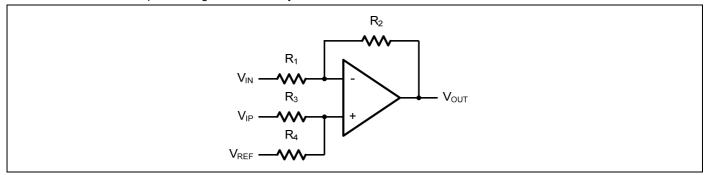


Figure 4. Differential Amplifier

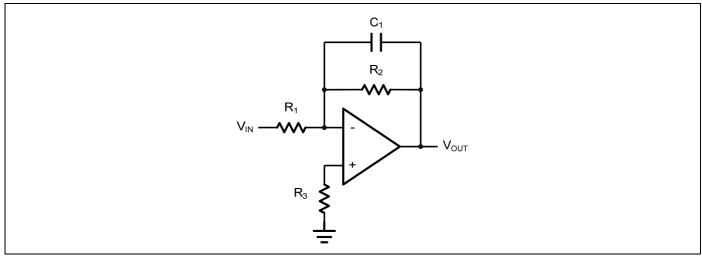
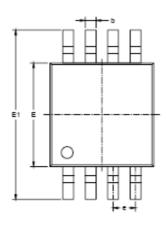
$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

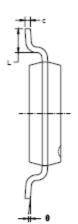
If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

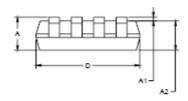
$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3 C_1)$.

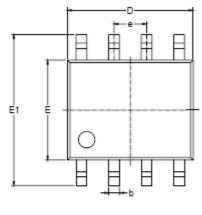



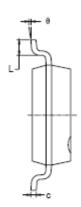

Figure 5. Low Pass Active Filter

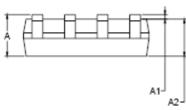


Package Information

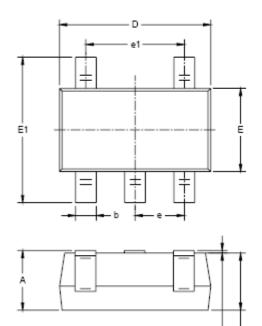
MSOP-8

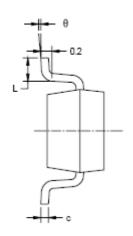





Symbol	Dimen In Milli		Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650 BSC		0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

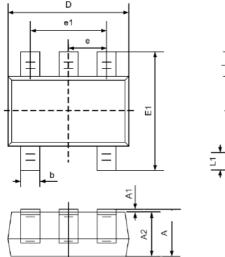
SOP-8





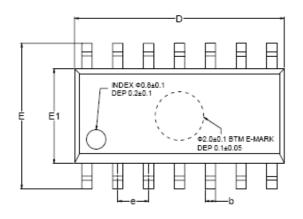
Symbol		nsions imeters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27	1.27 BSC		BSC	
L	0.400	1.270	0.016	0.050	
9	0°	8°	0°	8°	

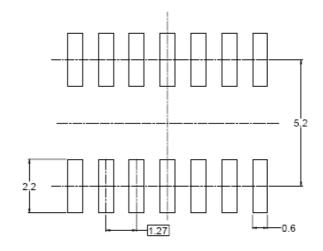
SOT23-5



Symbol		nsions imeters	Dimensions In Inches		
-,	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950 BSC		0.037 BSC		
e1	1.900	BSC	0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

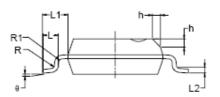
SC70-5





	Dimens	sions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650T	ΥP	0.026TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	




SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Cymahal	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
E	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
е	1.27 BSC				0.050 BSC	
L	0.45		0.80	0.018		0.032
L1	1.04 REF			0.040 REF		
L2	0.25 BSC			0.01 BSC		
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°

单击下面可查看定价,库存,交付和生命周期等信息

>>WDJ(微电晶)