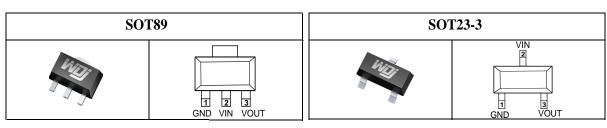
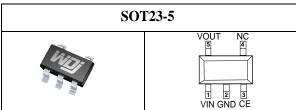


HT72XX LOW DROPOUT LINEAR REGULATOR

GENERAL DESCRIPTION

HT72XX series are a set of Low Dropout LinearRegulator ICs implemented in CMOS technology. They can withstand voltage 10V. And they are available with low voltage drop and low quiescentcurrent, widely used in audio, video and communication appliances.


FEATURES


- Low Power Consumption
- Low Voltage Drop
- Low Temperature Coefficient
- Withstanding Voltage 10V
- Quiescent Current 2.0μA
- Output Voltage Accuracy: tolerance ±2%
- High output current: 300mA

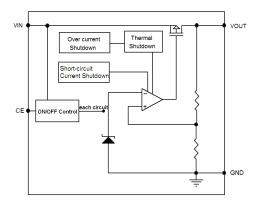
TYPICAL APPLICATIONS

- Battery-powered Equipments
- Communication Equipments
- Audio/Video Equipments

PIN CONFIGURATION

OUTPUT

Series	Output	Package
HT7221	2.1V	
HT7223	2.3V	
HT7225	2.5V	
HT7228	2.8V	
HT7230	3.0V	SOT89
HT7233	3.3V	TO92
HT7236	3.6V	SOT23-3
HT7240	4.0V	
HT7244	4.4V	
HT7250	5.0V	
HT7290	9.0V	


NOTE: "XX" is output voltage.

PIN DESCRIPTION

Pin Number	Pin Name	Functions	
SOT23-5	Fill Name	Functions	
1	V _{IN}	Power Input	
2	V _{SS}	Ground	
3	CE	ON / OFF Control	
4	NC	No Connect	
5	V _{OUT}	Output	

Pin Number SOT89-3	Pin Name	Functions
1	V _{SS}	Ground
2	V _{IN}	Power Input
3	V _{OUT}	Output

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Value range	Unit
Limit Power Voltage	$V_{ m IN}$	− 0.3∼+12	V
Storage Temperature Range	T_{STG}	$-50 \sim +125$	${\mathbb C}$
Operating Free-air Temperature Range	T_A	-40~+85	$^{\circ}$

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

HEAT DISSIPATION

Description	Symbol	Package	Value range	Unit
Thermal resistance	$ heta_{ m JA}$	SOT89	200	°C/W
		SOT23-5	500	°C/W
		SOT23-3	300	C/ W
Power dissipation	$P_{ m W}$	SOT89	500	mW
		SOT23-5	200	mW
		SOT23-3	200	111 VV

DC CHARACTERISTICS (unless otherwise noted T_A =+25°C)

 $(V_{\text{IN}}\text{=}\ V_{\text{OUT}}\text{+}2V,\ \ V_{\text{CE}}\text{=}V_{\text{IN}}\ \ ,\ \ C_{\text{IN}}\text{=}C_{\text{L}}\text{=}10\text{uF},\ \ \text{Ta}\text{=}25^{\text{O}}\text{C},\ \ \text{unless otherwise noted})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I_{OUT} =10mA, V_{IN} = V_{OUT} +2V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUTMAX}	V _{IN} = V _{OUT} +2V		300		mA
Load Regulation	ΔV_{OUT}	V _{IN} = V _{OUT} +2V , 1mA≤I _{OUT} ≤300mA		37		mV
Dropout Voltage	V_{DIF1}	I _{OUT} =100mA		180		mV
(Note 1)	V_{DIF2}	I _{OUT} =200mA		260		mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +2V		2		μΑ
Stand-by Current	I _{CEL}	V _{CE} =0V		0		μA
Line Regulation	ΔV_{OUT}	$I_{OUT} = 30 \text{mA}$ $V_{OUT} + 2V \le V_{IN} \le 10V$		0.2		%/V
CE "High" Voltage	VCEH	Start up	1.20			V
CE "Low" Voltage	VCEL	Shut down			0.8	V
Short-circuit Current	I _{SHORT}	V _{OUT} =0V		200		mA
Thermal Shutdown Protection	T_{sd}	I_{OUT} =10mA, V_{IN} = V_{OUT} +2V		100		$^{\circ}$ C

FUNCTIONAL DESCRIPTION

1. Input Bypass Capacitor

An input capacitor is recommended. A 10uF tantalum on the input is a suitable input bypassing for almost all applications.

2. Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the WD6119 is $10\mu F$, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be less than 0.5Ω .

3. Load Regulation

The HT72XX regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed. Figure 1, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of

the voltage drops along the line resistances. In this case, the load regulation seen at the R_{LOAD} would be degraded from the datasheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.

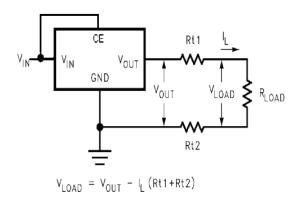
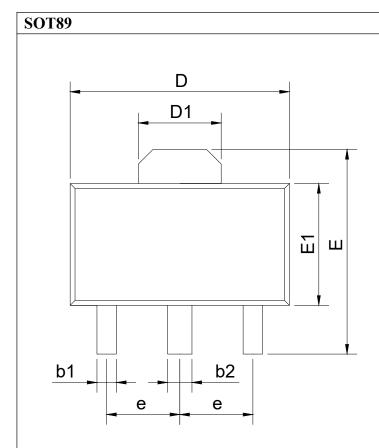
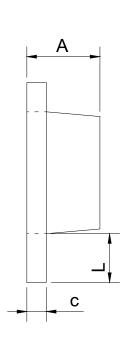
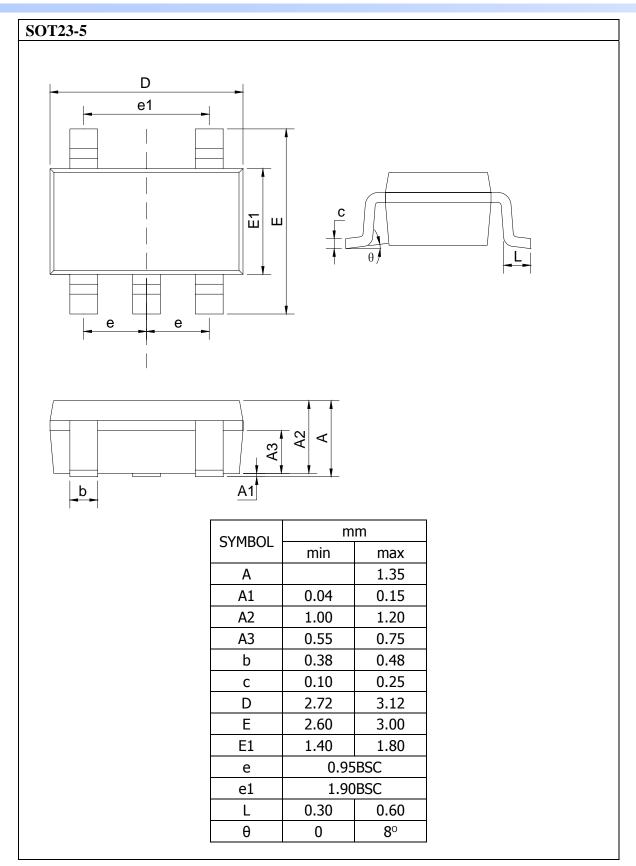
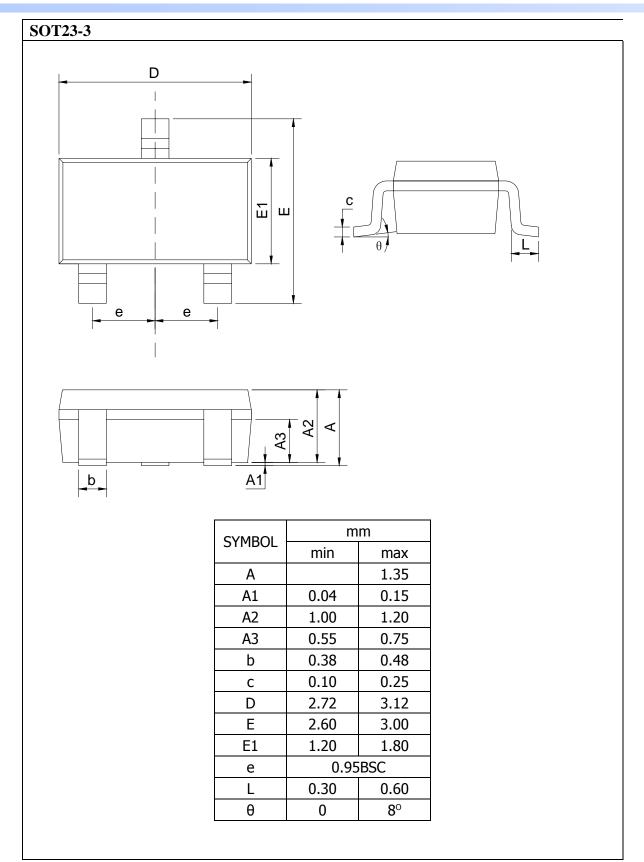




FIGURE 1. Typical Application using Fixed Output Regulator


PACKAGE INFORMATION



SYMBOL	mm		
	min	max	
Α	1.40	1.60	
b1	0.35	0.50	
b2	0.45	0.60	
С	0.36	0.46	
D	4.30	4.70	
D1	1.40	1.80	
Е	4.00	4.40	
E1	2.30	2.70	
e	1.50BSC		
Ĺ	0.80	1.20	

单击下面可查看定价,库存,交付和生命周期等信息

>>WDJ(微电晶)