

Features

- 40V/11A, $R_{DS(ON)} = 13m\Omega \text{ (Max.)} @ V_{GS} = 10V$ $R_{DS(ON)} = 16m\Omega \text{ (Max.)} @ V_{GS} = 4.5V$
- Reliable and Rugged
- Lead Free and Green Devices Available (RoHS Compliant)

Pin Description

Top View of SOP-8

Applications

 Power Management in Desktop Computer or DC/DC Converters.

N-Channel MOSFET

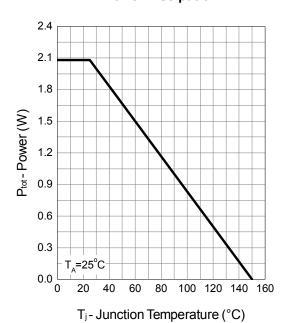
Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

Symbol	Parameter	Rating	Unit					
Common Ratings								
V_{DSS}	Drain-Source Voltage	40	V					
V_{GSS}	Gate-Source Voltage	±20	l v					
TJ	Maximum Junction Temperature	150	- °C					
T _{STG}	Storage Temperature Range	-55 to 150	$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j$					
Is	Diode Continuous Forward Current	T _A =25°C	2	Α				
	Continuous Drain Current	T _A =25°C	11					
l I _D		T _A =70°C	8.4	Α				
I _{DM} ^a	Pulsed Drain Current	T _A =25°C	30					
В	Maximum Power Dissipation	T _A =25°C	2.08	- w				
P _D		T _A =70°C	1.3	¬ ~				
П	Thermal Resistance-Junction to Ambient	t ≤ 10s	30					
$R_{\theta JA}$		Steady State	60	°C/W				
$R_{\theta JL}$	Thermal Resistance-Junction to Lead	Steady State	20	7				
l _{AS} b	Avalanche Current, Single pulse	L=0.1mH	23	Α				
E _{AS} ^b	Avalanche Energy, Single pulse	L=0.1mH	26	mJ				

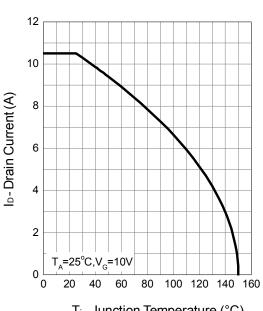
Note a: Max. current is limited by bonding wire.

Note b: UIS tested and pulse width limited by maximum junction temperature 150°C (initial temperature T_i=25°C).

Electrical Characteristics (T_A = 25°C Unless Otherwise Noted)

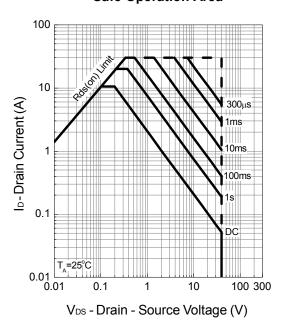

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
Static Characteristics								
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =250μA		40	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =32V, V _{GS} =0V		-	-	1		
			T _J =85°C	-	-	30	μA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{DS} = 2$	50μΑ	1.5	1.8	2.5	V	
I _{GSS}	Gate Leakage Current	V _{GS} =±20V, V _{DS} =0V		-	-	±100	nA	
	Drain-Source On-state Resistance	V _{GS} =10V, I _{DS} =7A		-	10.5	13		
R _{DS(ON)} c			T _J =125°C	-	15.75	-	mΩ	
		V _{GS} =4.5V, I _{DS} =	5A	-	12	16	7	
Gfs	Forward Transconductance	V _{DS} =5V, I _{DS} =15	A	-	31	-	S	
Diode Ch	aracteristics	·						
V _{SD} ^c	Diode Forward Voltage	I _{SD} =10A, V _{GS} =0	V	-	0.9	1.1	V	
t _{rr}	Reverse Recovery Time			-	15.2	-		
t _a	Charge Time	V_{DD} =20V, I_{SD} =10A, dI_{SD}/dt =100A/ μ s		-	9.4	-	ns	
t _b	Discharge Time			-	5.8	-		
Q _{rr}	Reverse Recovery Charge			-	9.5	-	nC	
Dynamic	Characteristics ^d							
R_G	Gate Resistance	V _{GS} =0V,V _{DS} =0\	/,F=1MHz	0.7	1.1	1.8	Ω	
C _{iss}	Input Capacitance	V _{GS} =0V,	\/ ₋		1125	-	pF	
C _{oss}	Output Capacitance	V _{DS} =20V, Frequency=1.0MHz		-	132	-		
C _{rss}	Reverse Transfer Capacitance			-	70	-		
t _{d(ON)}	Turn-on Delay Time				12.6	-		
t _r	Turn-on Rise Time	V_{DD} =20V, R _L =2 I_{DS} =1A, V_{GEN} =1		-	10	-	_	
t _{d(OFF)}	Turn-off Delay Time	R_{G} =1 Ω		-	23.6	-	ns	
t _f	Turn-off Fall Time			-	6	-		
Gate Cha	rge Characteristics ^d							
Qg	Total Gate Charge	V _{DS} =20V, V _{GS} = I _{DS} =7A	4.5V,	-	9.4	-		
Q_g	Total Gate Charge	V _{DS} =20V, V _{GS} =10V, I _{DS} =7A		-	20	28		
Q_{gth}	Threshold Gate Charge			-	2	-	nC	
Q_{gs}	Gate-Source Charge			-	3.9	-		
Q_{gd}	Gate-Drain Charge			-	3	-		

Note c : Pulse test ; pulse width≤300μs, duty cycle≤2%.

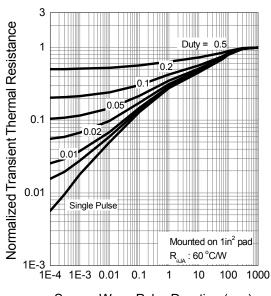


Typical Operating Characteristics

Power Dissipation



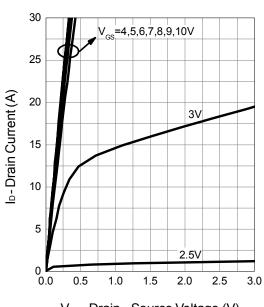
Drain Current



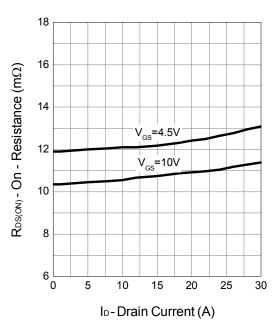
T_j- Junction Temperature (°C)

Safe Operation Area

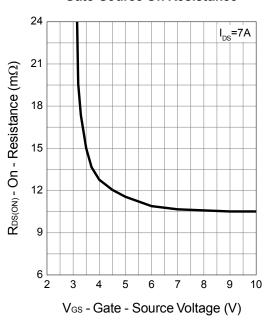
Thermal Transient Impedance



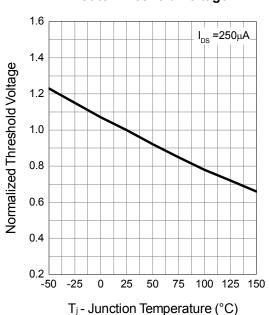
Square Wave Pulse Duration (sec)


Typical Operating Characteristics (Cont.)

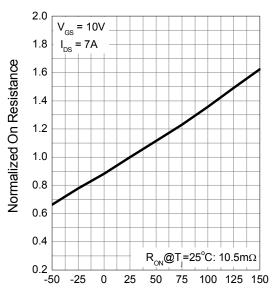
Output Characteristics

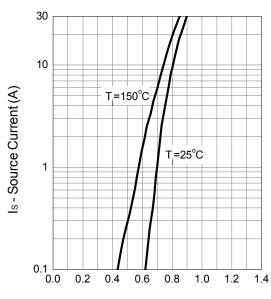


V_{DS} - Drain - Source Voltage (V)

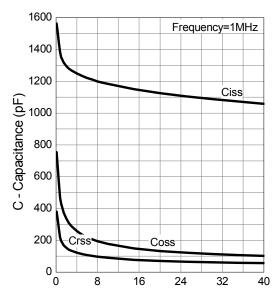

Drain-Source On Resistance

Gate-Source On Resistance

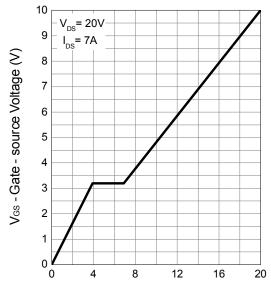

Gate Threshold Voltage


Typical Operating Characteristics (Cont.)

Drain-Source On Resistance

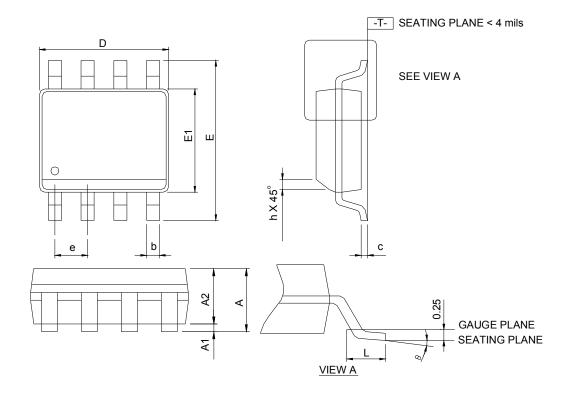

T_j - Junction Temperature (°C)

Source-Drain Diode Forward


Vsp - Source - Drain Voltage (V)

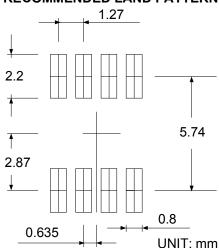
Capacitance

V_{DS} - Drain - Source Voltage (V)


Gate Charge

Q_G - Gate Charge (nC)

Package Information:SOP-8



Ş	SOP-8				
\$ > 2 2 2 2 3 3 3 3 3 3 3 3 3 3	MILLIMETERS		INCHES		
P	MIN.	MAX.	MIN.	MAX.	
Α	-	1.75	-	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	-	0.049	-	
b	0.31	0.51	0.012	0.020	
С	0.17	0.25	0.007	0.010	
D	4.80	5.00	0.189	0.197	
Е	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
h	0.25	0.50	0.010	0.020	
L	0.40	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

Note: 1. Follow JEDEC MS-012 AA.

- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
- 3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

RECOMMENDED LAND PATTERN

Attention

- 1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.
- 2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.
- 3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.
- 9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>WINSOK(微硕)