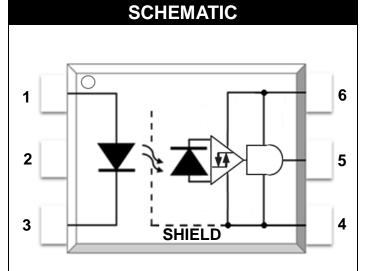


Description

The MPCS-480 series fast speed photocoupler contains a LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.

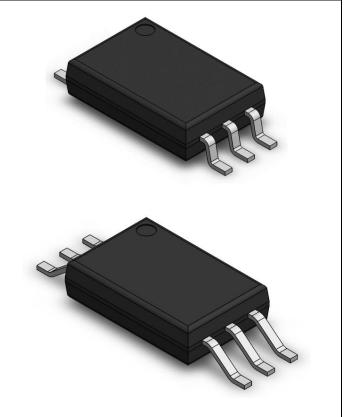

Features

- Totem pole output
- Truth Table Guaranteed: V_{CC} from 4.5V to 30V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Regulatory Approvals
 - UL UL1577
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898

Applications

- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Motor Drives
- Industrial Inverters
- General Digital Isolation

LSOP6, DC Input, IPM Photo coupler


PIN DEFINITION

1. Anode	6.	Vcc
----------	----	-----

2. NC

- 5. Vo
- 3. Cathode 4. GND

PACKAGE OUTLINE

Rev: 2.0

LSOP6, DC Input, IPM Photo coupler

TRUTH TABLE					
LED	OUT				
ON	Н				
OFF L					

Note: A 0.1μ F bypass capacitor must be connected between Pin 4 and 6.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE	
Storage Temperature	T _{stg}	-55	125	°C	-	
Operating Temperature	T_{opr}	-40	110	°C	-	
Output IC Junction Temperature	TJ	-	125	°C	-	
Average Forward Input Current	lF	-	20	mA	-	
Reverse Input Voltage	VR	-	5	V	-	
Output Collector Current	lo	-	50	mA	-	
Supply Voltage	Vcc	0	35	V	-	
Output Collector Voltage	Vo	-0.5	35	V	-	
Total Package Power Dissipation	Рт	-	145	mW	-	
Lead Solder Temperature	Tsol	-	260	°C	-	

Note: A ceramic capacitor $(0.1 \ \mu\text{F})$ should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

RECOMMENDED OPERATION CONDITIONS						
PARAMETER	SYMBOL	MIN.	MAX.	UNIT		
Operating Temperature	TA	-40	110	°C		
Supply Voltage ¹	Vcc	4.5	30	V		
Input Current (ON) ²	I _{F(ON)}	1.6	5	mA		
Input Voltage (OFF)	V _{F(OFF)}	-	0.8	V		

Note 1: Detector requires a V_{CC} of 4.5 V or higher for stable operation as output might be unstable if V_{CC} is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.

Note 2: The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guard band.

\mathbf{O} –					LSOP6,	DC Input, IPM Photo co	oupler
E	LECTRI	CAL C	PTICA	L CH	ARACT	TERISTICS	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
		INPU	JT CHAR	ACTERI	STICS	· · · · · · · · · · · · · · · · · · ·	
Forward Voltage	VF	1.6	2.0	2.4	V	I _F = 10 mA	-
Input Forward Voltage Temperature Coefficient	ΔV _F / ΔΤ	-	-1.237	-	mV/°C	IF=10mA	-
Input Reverse Voltage	BV _R	5	-	-	V	IR = 10µA	-
Input Threshold Current (Low to High)	I _{FLH}	-	0.2	1.5	mA	VCC = 30 V, VO > 5V	-
Input Threshold Voltage (High to Low)	Vfhl	0.8	-	-	V	VCC = 30 V, VO < 5V	-
Input Capacitance	CIN	-	60	-	pF	VF = 0 V, f = 1 MHz	1
		OUTF	PUT CHA	RACTER	ISTICS		
High Level Supply Current	Іссн	-	-	3.0	mA	Vcc = 5.5V, I⊧ = 5mA, I₀ =0mA	-
	ТССН	-	1.9	3.0	mA	V_{CC} = 30V, I_F = 5mA, I_O =0mA	
Low Level Supply Current	ICCL	-	-	3.0	mA	$V_{CC} = 5.5V, V_F = 0V, I_0 = 0mA$	-
	ICCL		2.0	3.0	mA	$V_{CC} = 30V, V_F = 0V, I_O = 0mA$	
High level output current	Іон	-	-	-100	mA	V_{CC} = 5.5V, IF = 5mA, V_{O} = GND	2
	ION	-	-	-200		$V_{CC} = 20V$, IF = 5mA, $V_0 = GND$	2
Low level output current	lol	100	-	-	mA	$V_0 = VCC = 5.5V, V_F = 0V$	2
	IOL	200	-	-		$V_O = VCC = 20V, V_F = 0V$	2
High Level Output Voltage	V _{OH}	Vcc -0.5	V _{CC} -0.04	-	V	lo∟ = -6.5mA	-
Low Level Output Voltage	Vol	-	0.09	0.5	V	lo∟ = 6.5mA	-

Specified over recommended temperature (TA = -40°C to +110°C, +4.5V \leq VCC \leq 30V), IF(ON) = 1.6mA to 5mA, VF(OFF) = 0V to 0.8V, unless otherwise specified. All typicals at TA = 25°C.

Note 1 Input capacitance is measured between pin 1 and pin 3.

Note 2: Duration of output short circuit time should not exceed 10 µs.

				LSUP	<i>b, DC II</i>	iput, ipivi photo (oupier	
SWITCHING SPECIFICATION								
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE	
	SWITCHING CHARACTERISTICS							
Propagation Delay Time			110	220			4	
to Output Low Level	t _{PHL}	-	110	220	ns		1	
Propagation Delay Time			00	220			4	
to Output High Level	t _{PLH}	-	90	220	ns	f = 10kHz,	1	
Pulse Width Distortion	P _{WD}	-	20	120	ns	Duty Cycle = 50% I _F = $2mA$,	2	
Propagation Delay Difference	P _{DD}	-200	_	200	ns	$V_{CC} = 30V$	3	
Between Any Two Parts	(t _{PHL} - t _{PLH})	-200	-	200	115		3	
Rise Time	tr	-	6	-	ns		-	
Fall Time	t _f	-	7	-	ns		-	
Common Mode Transient						I⊧=4.0mA V _{CC} = 5V,		
	СМн	20	-	-	kV/µs	T _A = 25 °C,	4	
Immunity at Logic High						V_{CM} = 1.5kV		
Common Mode Transient	CML 20		-	-		I _F =0mA V _{CC} = 5V,		
		20			kV/μs	T _A = 25 °C,	4	
Immunity at Logic Low						V _{CM} = 1.5kV		

ISODE

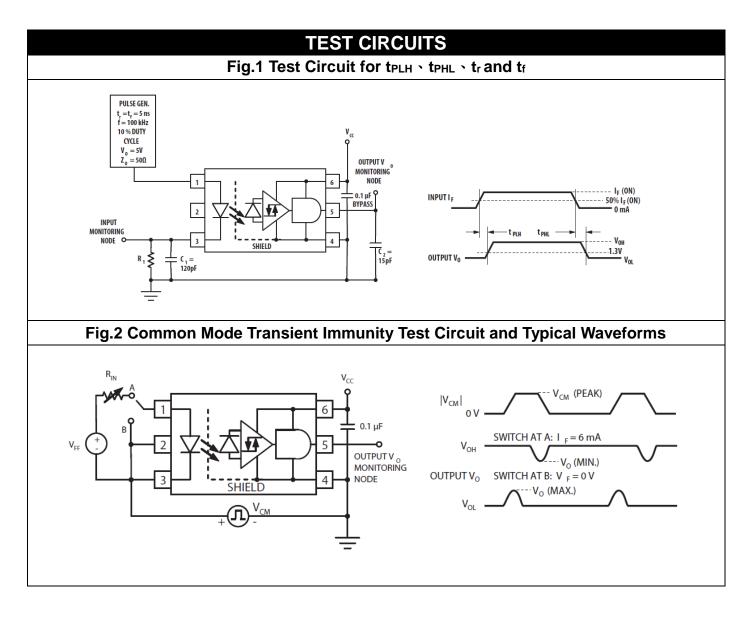
Over recommended operating conditions $T_A = -40^{\circ}$ C to 105° C, $V_{CC} = +4.5$ V to 30 V, $I_{F(ON)} = 1.6$ mA to 5 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typicals at $T_A = 25^{\circ}$ C.

Note 1: The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.

Note 2: Pulse Width Distortion (PWD) is defined as $|t_{PHL} - t_{PLH}|$ for any given device.

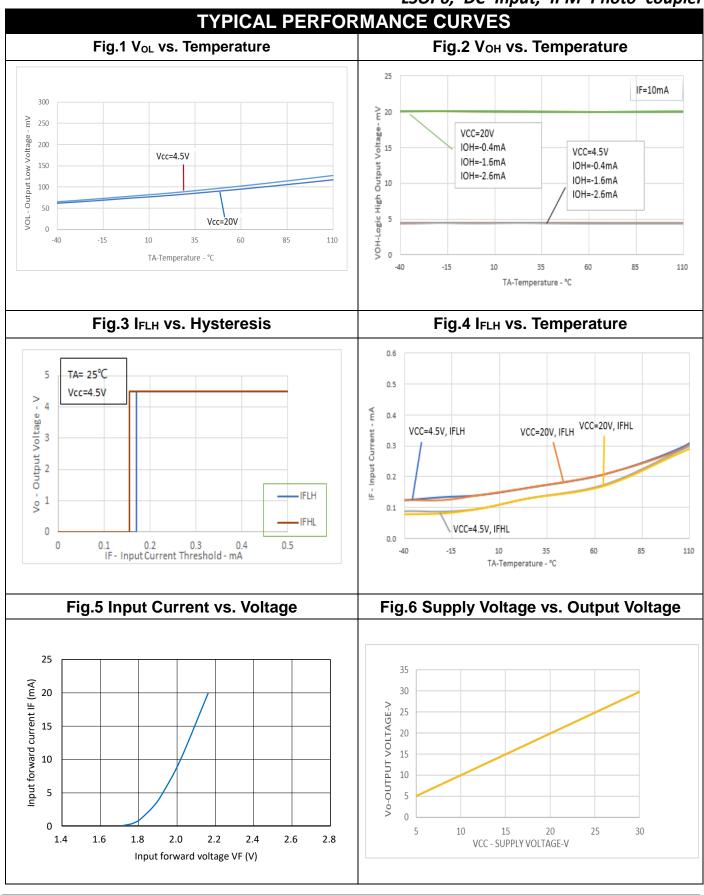
Note 3: The difference of t_{PLH} and t_{PHL} between any two devices under the same test condition.

Note 4: CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_0 > 2.0$ V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_0 < 0.8$ V. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.

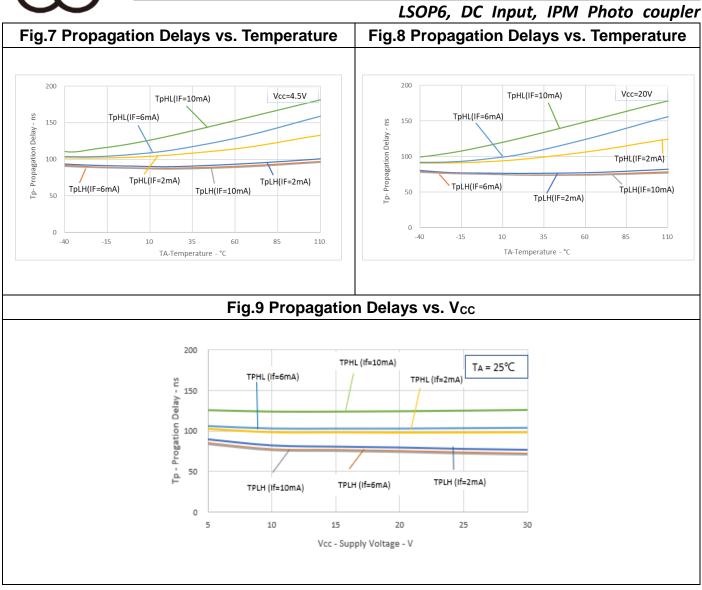

LSOP6, DC Input, IPM Photo coupler

ISOLATION CHARACTERISTIC										
PARAMETER	SYMBOL	DEVICE	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE		
Withstand Insulation	N/	MPCS-480P	5000	5000				V	RH ≤ 40%-60%,	1.2
Test Voltage	Viso	MPCS-480W		5000 -		v	t = 1min, T _A = 25 °C	1,2		
Input-Output	RI-0			10 ¹²		Ω	V _{I-O} = 500V DC	1		
Resistance	N-0	-			-	- 12	$v_{1-0} = 300 v DC$			

All Typical values at $T_A = 25^{\circ}C$

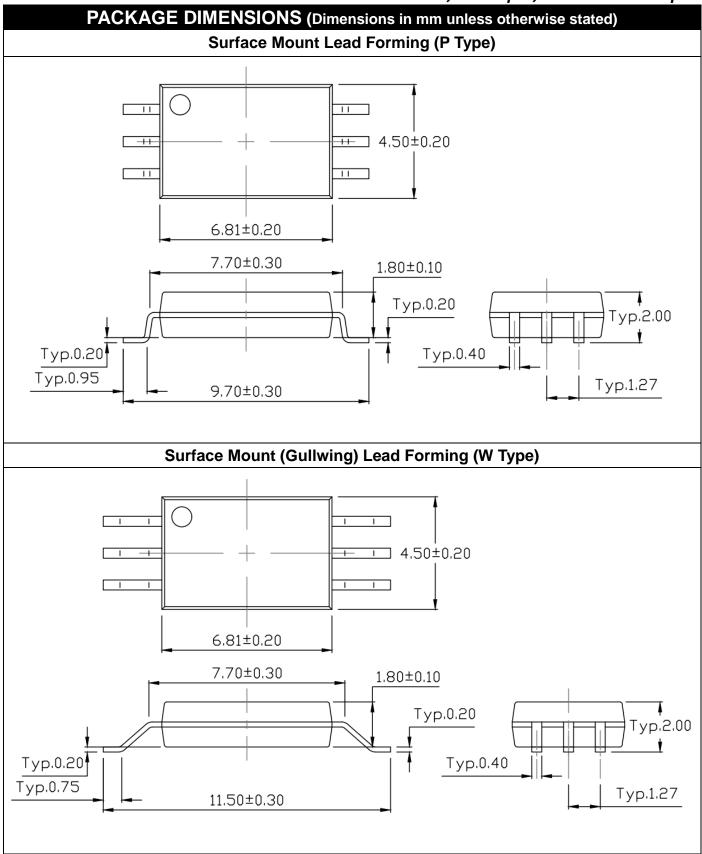

Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second.

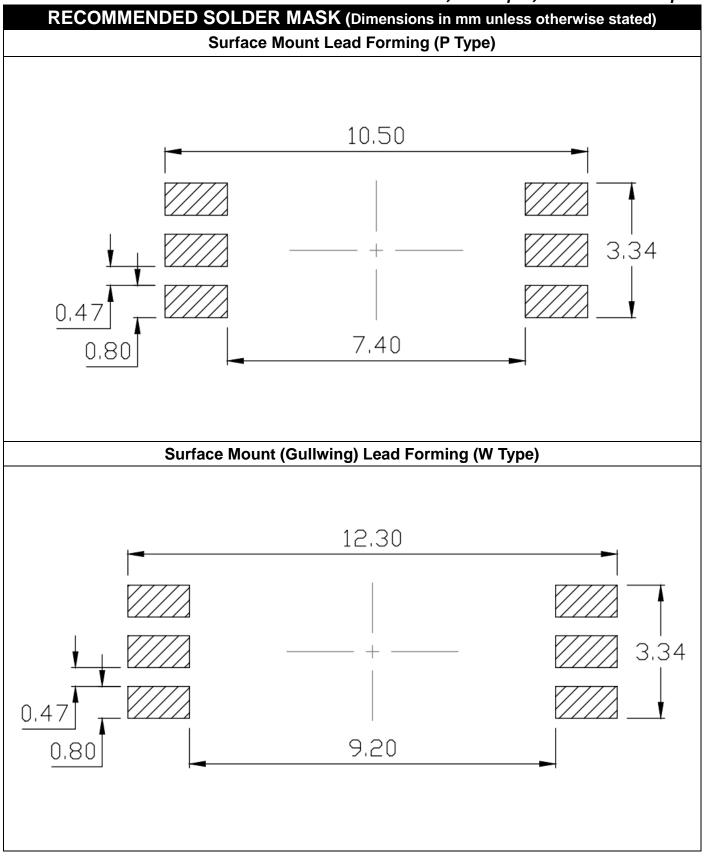


LSOP6, DC Input, IPM Photo coupler

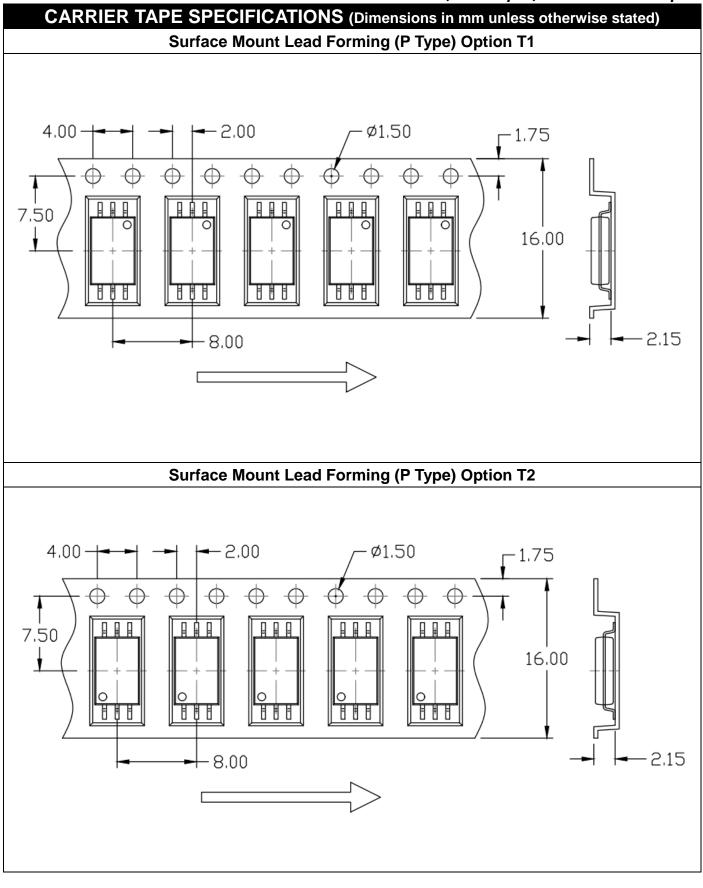
Rev: 2.0



7

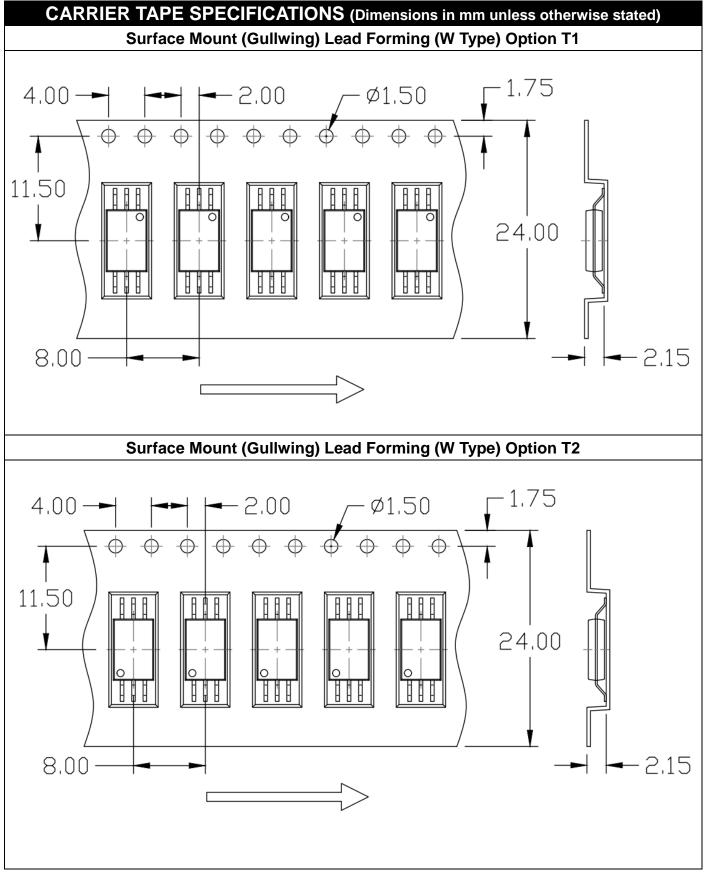


LSOP6, DC Input, IPM Photo coupler


LSOP6, DC Input, IPM Photo coupler

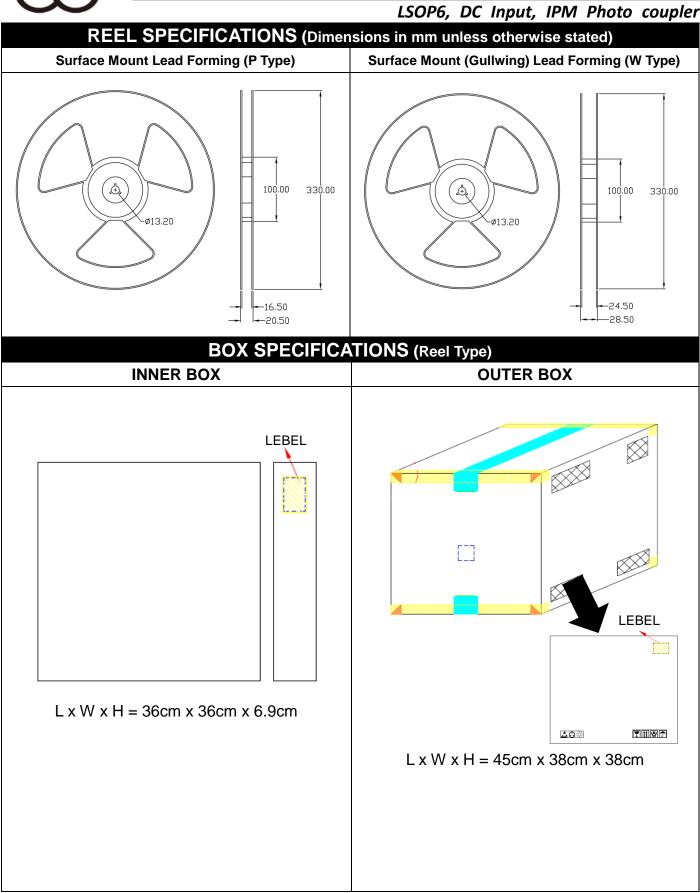
Rev: 2.0

LSOP6, DC Input, IPM Photo coupler



Release Date: 2024/6/20

Rev: 2.0



LSOP6, DC Input, IPM Photo coupler

Rev: 2.0

Downloaded From Oneyac.com

Option P T1/T2

Option W T1/T2

3000 Units/Reel

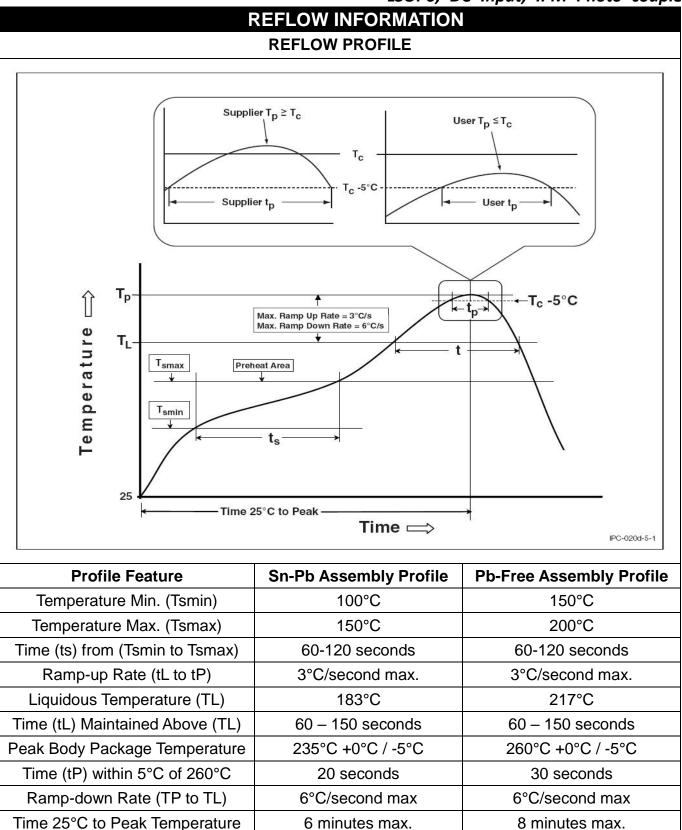
3000 Units/Reel

MPCS-480 Series

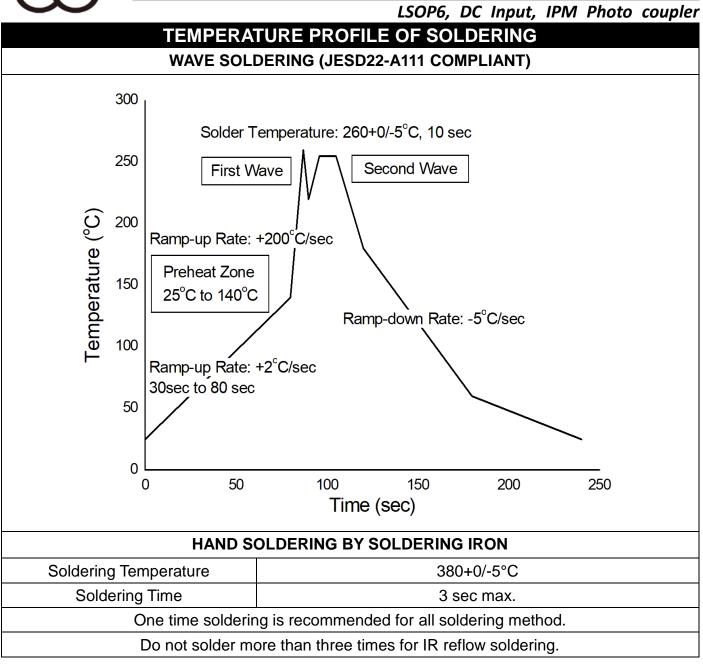
\mathbf{C}		LSOP6, DC Input, IPM Photo coupler					
	ORDERING	AND MARKING	SINFORMATION				
	MARKING INFORMATION						
	MYYWW 480 HV	W 48	 Y : Year date code VW : 2-digit work week 80 : Part Number or H : Factory identification mark 				
ORD	ERING INFORMAT	ION	LABEL INFORMATION				
MPC	CS-480(P/W)	-ZV	結光照明光電股份有限公司				
Z – Tape and	imber	Clearance)	WISELITE Optronics Co., Ltd Part No : XXXXXXXXXXX Bin Code : X Lot No : XXXXXXXXXXX Date Code : XXXX Q'ty : XXXX pcs				
			ΓΙΤΥ				
Option	Quantity	Quantity – Inner bo	ox Quantity – Outer box				

13

5 Inner box/Outer box = 45k Units


5 Inner box/Outer box = 30k Units

3 Reels/Inner box


2 Reels/Inner box

LSOP6, DC Input, IPM Photo coupler

15

LSOP6, DC Input, IPM Photo coupler

DISCLAIMER

- WISELITE is continually improving the quality, reliability, function and design. WISELITE reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- WISELITE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, WISELITE disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact WISELITE sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated in each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify WISELITE's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.

单击下面可查看定价,库存,交付和生命周期等信息

>>WISELITE(喆光)