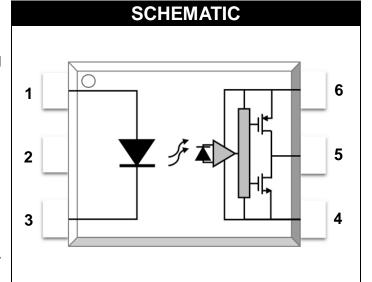


Description


The MPCS-341 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an LED optically coupled to an integrated circuit with a power output stage. The 3.0A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/150 A. For IGBTs with higher ratings, the MPCS-341 series can be used to drive a discrete power stage which drives the IGBT gate.

Features

- 3.0 A maximum peak output current
- Rail-to-rail output voltage
- 110 ns maximum propagation delay
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature -40°C ~ +110°C.
- Regulatory Approvals
 - UL UL1577
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898

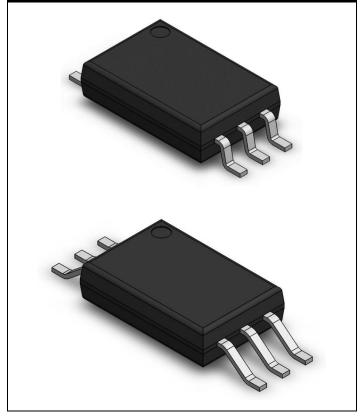
Applications

- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives

PIN DEFINITION

1. Anode

6. Vcc


2. NC

5. V_o

3. Cathode

4. GND

PACKAGE OUTLINE

TRUTH TABLE						
LED	V _{cc} -V _{ss}	V _{cc} -V _{ss}	VO			
LED	(Turn-ON, +ve going)	(Turn-OFF, -ve going)	VO			
OFF	0 - 30 V	0 - 30 V	Low			
ON	0 - 11.0 V	0 - 9.5 V	Low			
ON	11.0 - 13.5 V	9.5 - 12 V	Transition			
ON	13.5 - 30 V	12 - 30 V	High			

Note: A 0.1µF bypass capacitor must be connected between Pin 4 and 6.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE		
Storage Temperature	T _{stg}	-55	125	°C	-		
Operating Temperature	T _{opr}	-40	110	°C	-		
Output IC Junction Temperature	TJ	-	125	°C	-		
Total Output Supply Voltage	(Vcc -Vss)	0	35	V	-		
Average Forward Input Current	l _F	-	20	mA	-		
Reverse Input Voltage	V_R	-	5	V	-		
"High" Peak Output Current	IOH(PEAK)	-	3.0	А	1		
"Low" Peak Output Current	I _{OL(PEAK)}	-	3.0	А	1		
Output Voltage	V _{O(PEAK)}	-0.5	Vcc	V	-		
Power Dissipation	Pı	-	45	mW	-		
Output IC Power Dissipation	Po	-	700	mW	-		
Lead Solder Temperature	T _{sol}	-	260	°C	-		

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note 1: Exponential waveform. Pulse width \leq 10 μ s, f \leq 15 kHz

RECOMMENDED OPERATION CONDITIONS						
PARAMETER	SYMBOL	MIN.	MAX.	UNIT		
Operating Temperature	TA	-40	110	°C		
Supply Voltage	Vcc	15	30	V		
Input Current (ON)	I _{F(ON)}	5	16	mA		
Input Voltage (OFF)	V _{F(OFF)}	-3.0	0.8	V		

E	LECTRI	CAL O	PTICAL	CHAR	ACTER	ISTICS	•
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
		INPL	T CHARA	CTERISTIC	CS		
Input Forward Voltage	V _F	1.6	1.9	2.4	V	IF=10mA	-
Input Forward Voltage Temperature Coefficient	ΔV _F / ΔΤ	-	-1.237	-	mV/°C	IF=10mA	-
Input Reverse Voltage	BV _R	5	-	-	V	IR = 10μA	-
Input Threshold Current (Low to High)	I _{FLH}	-	0.9	2	mA	V _O > 5V, I _O = 0A	-
Input Threshold Voltage (High to Low)	V _{FHL}	0.8	-	-	V	VCC = 30 V, VO < 5V	-
Input Capacitance	C _{IN}	-	60	-	pF	f = 1 MHz, VF = 0 V	-
		OUTP	UT CHAR	ACTERIST	ICS		
High Level Supply Current	Іссн	-	1.70	3	mA	I _F = 10 mA, VCC = 30V, VO = Open	-
Low Level Supply Current	I _{CCL}	-	2.11	3	mA	$I_F = 0$ mA, VCC = 30V, VO = Open	-
High level output current	Іон	3.0	-	-	А	I _F = 10 mA, VCC = 30V VO = VCC - 15	1
Low level output current	Іог	3.0	-	-	А	I _F = 0 mA, VCC = 30V VO = VSS + 15	1
High level output voltage	Vон	29.7	29.88	-	V	IF = 10mA, IO = -100mA	2,3
Low level output voltage	Vol	-	0.1	0.3	V	I _F = 0 mA, IO = 100 mA	-
IIVI O Throobold	V _{UVLO+}	11.0	12.6	13.5	V	VO > 5V, IF = 10 mA	-
UVLO Threshold	V _{UVLO} -	9.5	11.2	12.0	V	VO < 5V, IF = 10 mA	-

Note: All Typical values at $T_A = 25$ °C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Note 1: Maximum pulse width = $10 \mu s$.

Note 2: In this test V_{OH} is measured with a dc load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.

Note 3: Maximum pulse width = 1 ms.

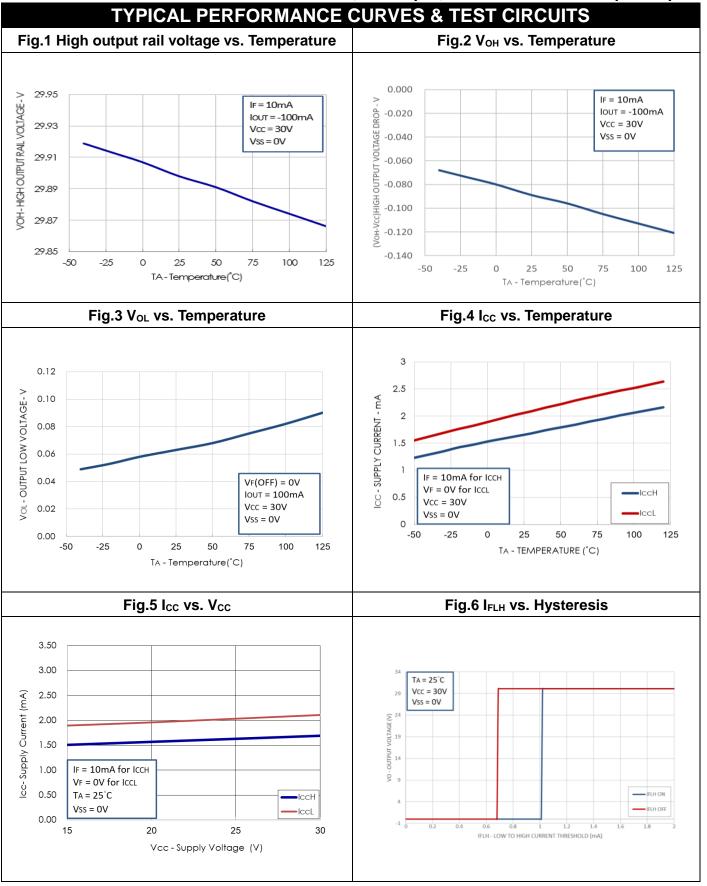
SWITCHING SPECIFICATION							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Propagation Delay Time to	tрцн		74.5	110			
Low Output Level	UPLH .	,	74.5	110		D= - 10.0	1
Propagation Delay Time to	4		61.3	110		Rg = 10Ω ,	
High Output Level	t _{PHL}	-	01.3	110		Cg = 25 nF,	-
Pulse Width Distortion	PwD	-	22	70	ns	f = 10kHz,	-
Propagation Delay Difference	P _{DD}	400		.400		Duty Cycle = 50%	
Between Any Two Parts	(t _{PHL} - t _{PLH})	-100	-	+100		I _F = 10mA, V _{CC} = 30V	-
Output Rise Time (20 to 80%)	t _r	-	20	-			-
Output Fall Time (80 to 20%)	t _f	-	15	-			-
						IF= 7 to 16mA	
Common mode transient	1014	20	40		10///	V _{CC} = 30V,	1.0
immunity at high level output	CM _H		20	40	-	kV/µs	T _A = 25 °C,
						V _{CM} = 1kV	
						IF=0mA	
Common mode transient	ICM	20	40		ld //u.c	Vcc= 30V,	1.2
immunity at low level output	CM _L	20	40	-	kV/µs	T _A = 25 °C,	1,3
						V _{CM} = 1kV	

Note: All Typical values at TA = 25° C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

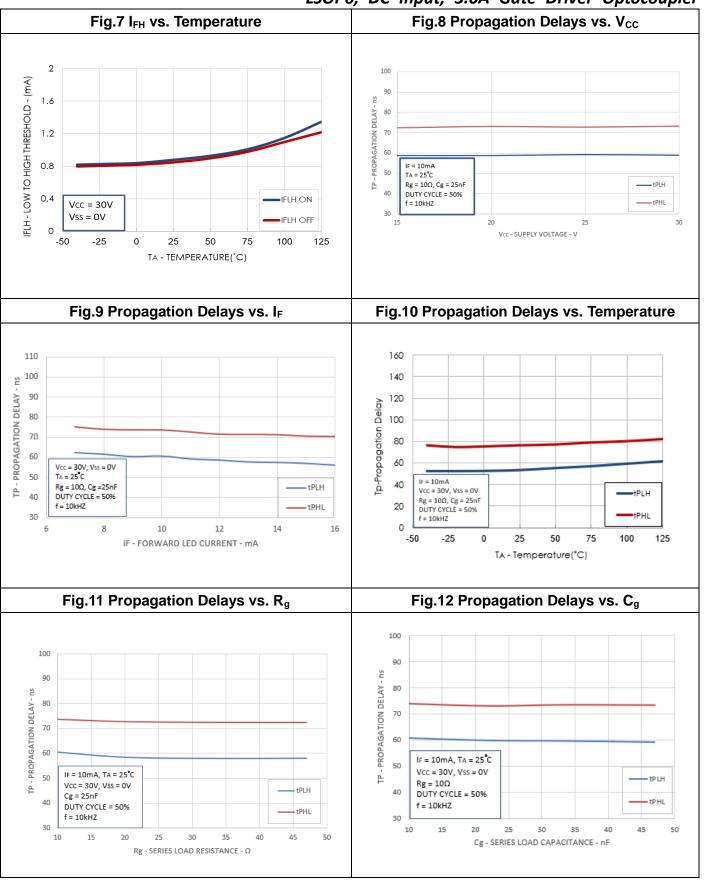
Note 1: Pin 2 needs to be connected to LED common.

Note 2: Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (meaning VO > 15.0V).

Note 3: Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (meaning VO < 1.0V).


ISOLATION CHARACTERISTIC								
PARAMETER	SYMBOL	DEVICE	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Withstand Insulation	V	MPCS-341P	5000			\ /	RH ≤ 40%-60%,	1.0
Test Voltage	Viso	MPCS-341W 5000			-	- V	t = 1min, T _A = 25 °C	1,2
Input-Output	R⊩o			10 ¹²		0	V _{I-O} = 500V DC	1
Resistance	N I-0	-	-	10,5	-	Ω	VI-0 = 500V DC	1

Note: All Typical values at $T_A = 25$ °C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.


Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second. This test is performed before the 100% production test for partial discharge.

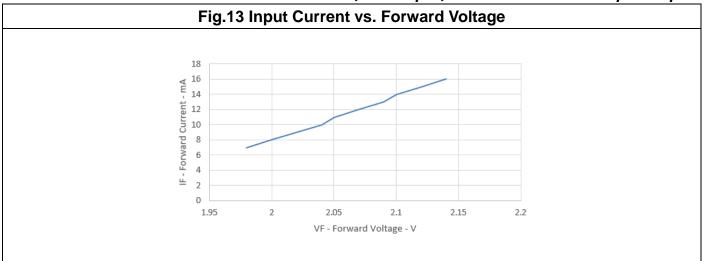


Fig.14 Iон Test Circuit

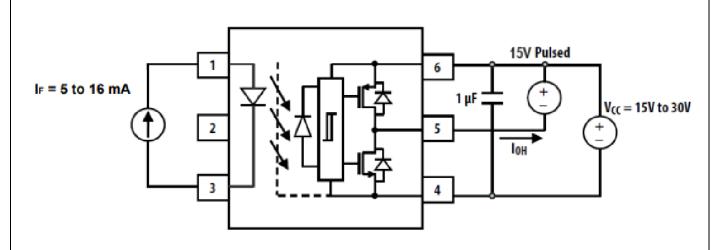
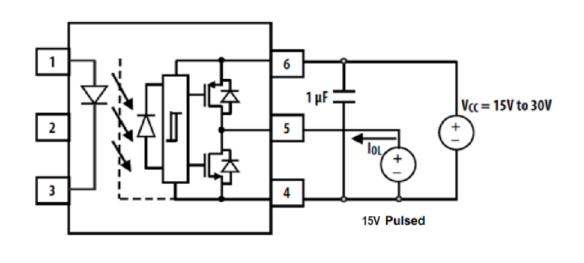
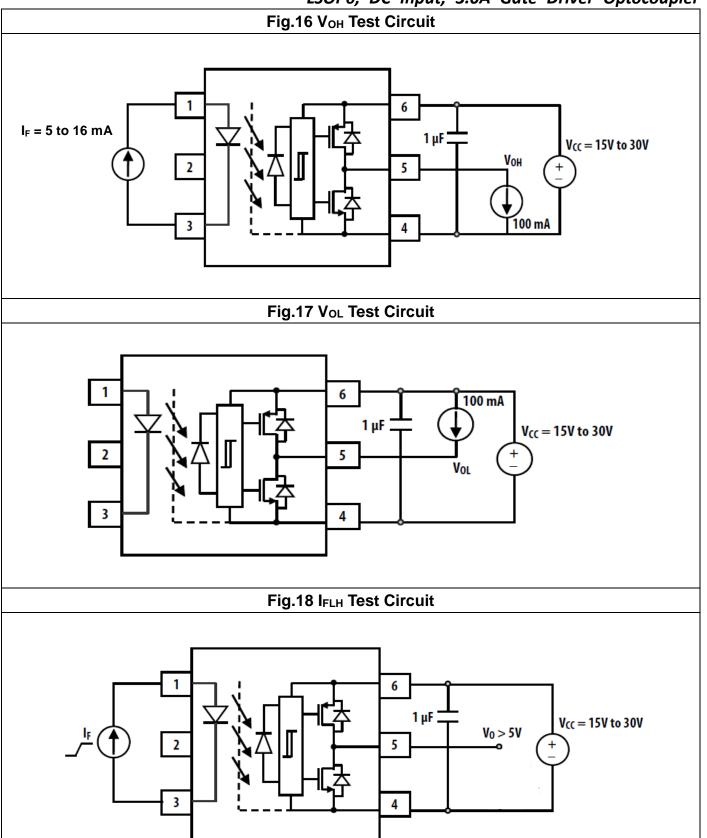




Fig.15 I_{OL} Test Circuit

Fig.19 U_{VLO} Test Circuit $I_F = 5 \text{ to } 16 \text{ mA}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

Fig.20 tphL, tpLH, tr and tf Test Circuit and Waveforms

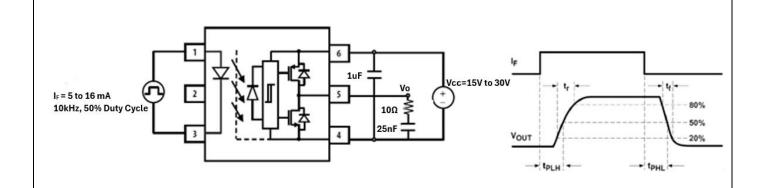
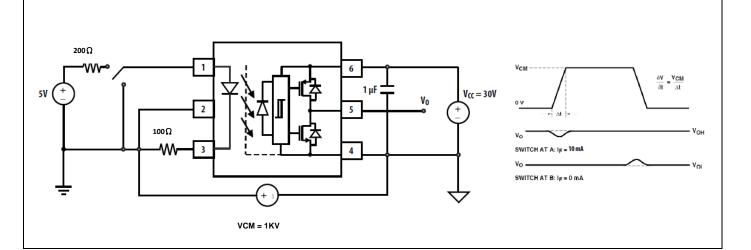



Fig.21 CMR Test Circuit with Split Resistors Network and Waveforms

Тур.0.20

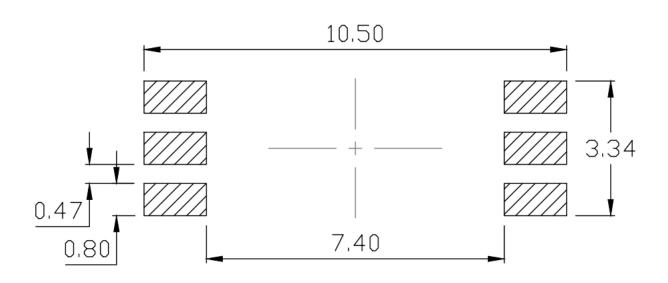
Тур.0.75

LSOP6, DC Input, 3.0A Gate Driver Optocoupler PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated) **Surface Mount Lead Forming (P Type)** П ++ 4.50±0.20 11 11 6.81±0.20 7.70±0.30 1.80±0.10 Typ.0.20 Typ.2.00 Typ.0.20 Typ.0.40 Typ.0.95 Typ.1.27 9.70±0.30 General Tolerance: +/-0.25mm **Surface Mount (Gullwing) Lead Forming (W Type)** 1 4.50±0.20 6.81±0.20 7.70±0.30 1.80±0.10 Typ.0.20 Typ.2.00

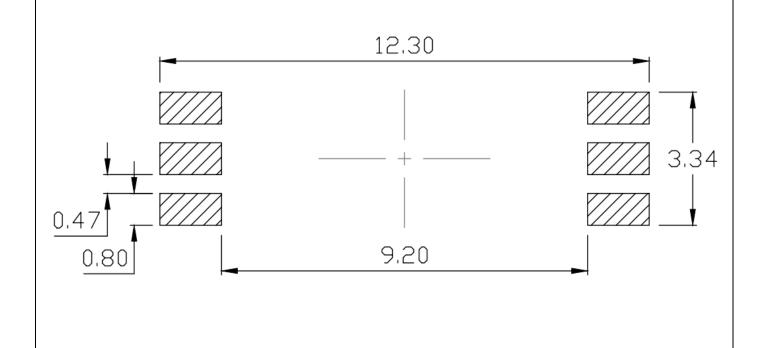
Rev: 2.1 Release Date: 2024/7/29

Typ.0.40

Typ.1.27

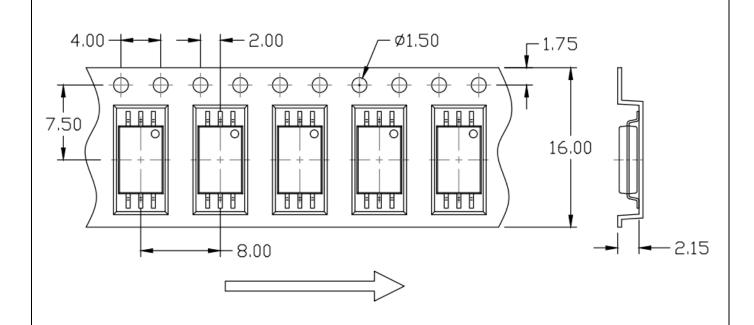

General Tolerance: +/-0.25mm

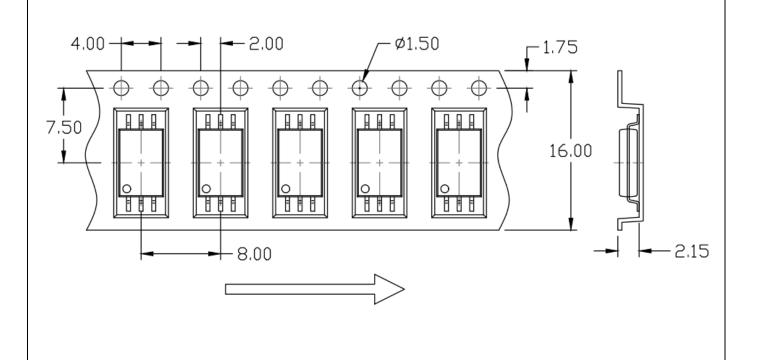
11.50±0.30



RECOMMENDED SOLDER MASK (Dimensions in mm unless otherwise stated)

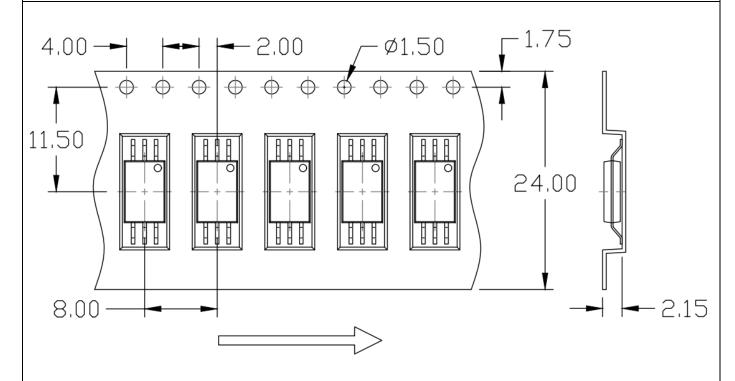
Surface Mount Lead Forming (P Type)

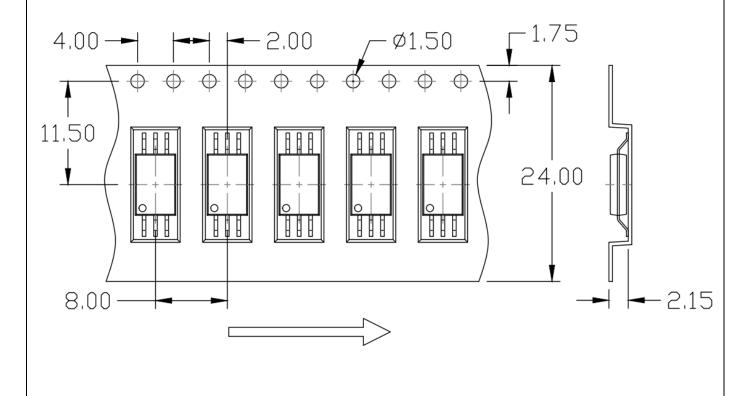

Surface Mount (Gullwing) Lead Forming (W Type)



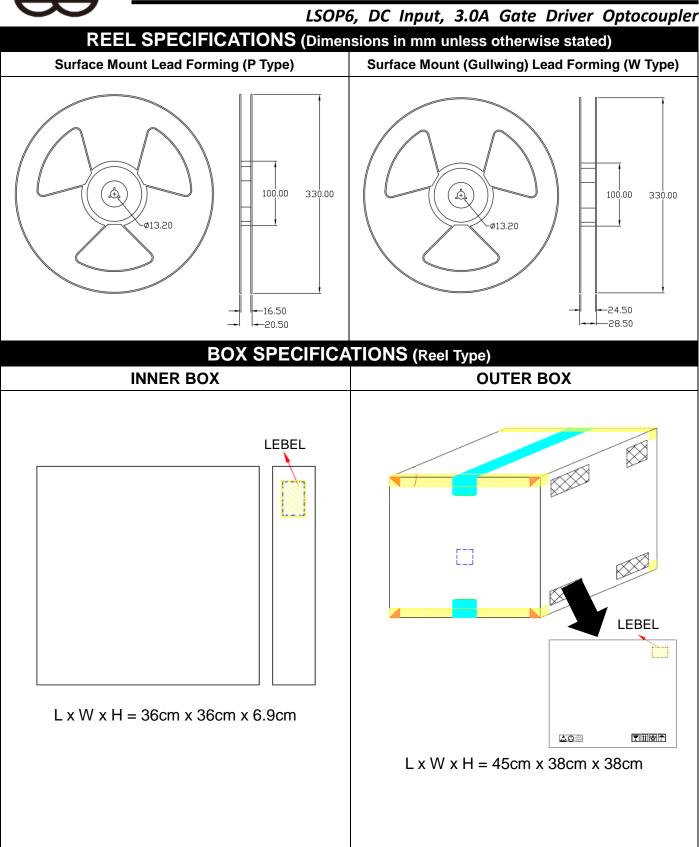
CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated)

Surface Mount Lead Forming (P Type) Option T1

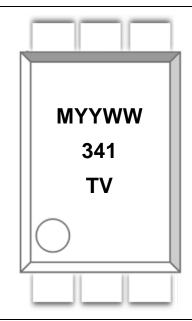

Surface Mount Lead Forming (P Type) Option T2



CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated)


Surface Mount (Gullwing) Lead Forming (W Type) Option T1

Surface Mount (Gullwing) Lead Forming (W Type) Option T2



ORDERING AND MARKING INFORMATION

MARKING INFORMATION

M : Company Abbr.YY : Year date codeWW : 2-digit work week

341 : Part Number

T or H : Factory identification mark
V : VDE Identification(Option)

ORDERING INFORMATION

MPCS-341(P/W)-ZV

MPC - Company Abbr.

S – Stack

341 - Part Number

P/W – Lead Form Option

(P-9mm Clearance or W-11mm Clearance)

Z – Tape and Reel Option (T1/T2)

V –VDE Option (V or None)

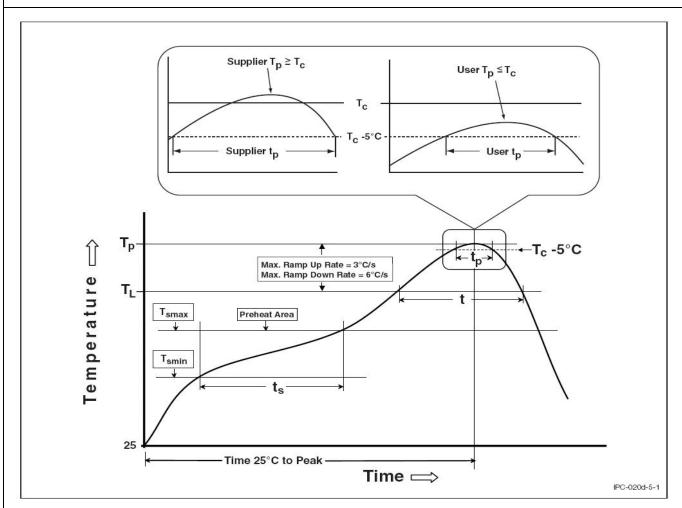
LABEL INFORMATION

喆光照明光電股份有限公司 WISELITE Optronics Co., Ltd

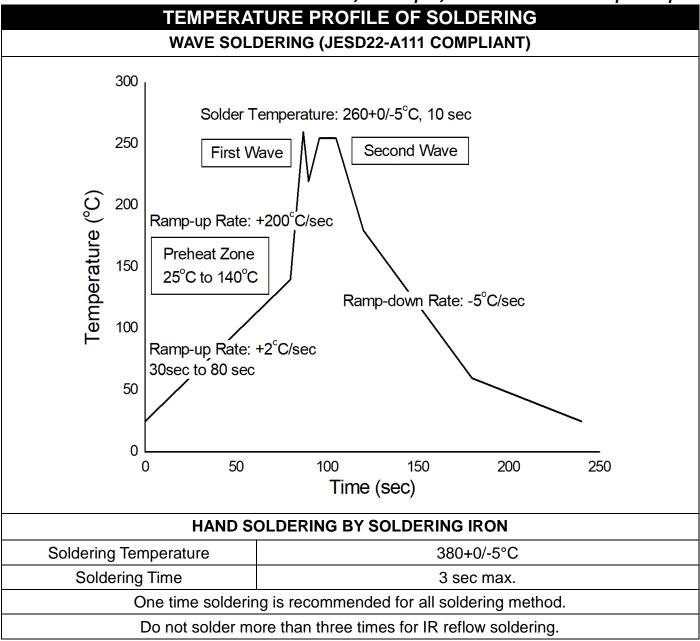
Part No: XXXXXXXXXXXXX Bin Code: X

Lot No : XXXXXXXXXX Date Code : XXXX

Q'ty: XXXX pcs


PACKING QUANTITY

Option Quantity		Quantity – Inner box	Quantity – Outer box
Option P T1/T2	3000 Units/Reel	3 Reels/Inner box	5 Inner box/Outer box = 45k Units
Option W T1/T2	3000 Units/Reel	2 Reels/Inner box	5 Inner box/Outer box = 30k Units


REFLOW INFORMATION

REFLOW PROFILE

Profile Feature	Sn-Pb Assembly Profile	Pb-Free Assembly Profile	
Temperature Min. (Tsmin)	100°C	150°C	
Temperature Max. (Tsmax)	150°C	200°C	
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	60-120 seconds	
Ramp-up Rate (tL to tP)	3°C/second max.	3°C/second max.	
Liquidous Temperature (TL)	183°C	217°C	
Time (tL) Maintained Above (TL)	60 – 150 seconds	60 – 150 seconds	
Peak Body Package Temperature	235°C +0°C / -5°C	260°C +0°C / -5°C	
Time (tP) within 5°C of 260°C	20 seconds	30 seconds	
Ramp-down Rate (TP to TL)	6°C/second max	6°C/second max	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

DISCLAIMER

- WISELITE is continually improving the quality, reliability, function and design. WISELITE reserves
 the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- WISELITE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, WISELITE disclaims (a) any and all liability arising out of the application or use of any product, (b) any and all liability, including without limitation special, consequential or incidental damages, and (c) any and all implied warranties, including warranties of fitness for particular.
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact WISELITE sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify WISELITE's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.

单击下面可查看定价,库存,交付和生命周期等信息

>>WISELITE(喆光)