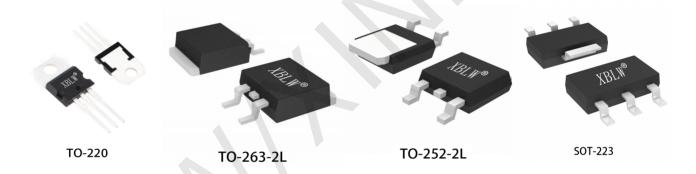


Product Specification

XBLW L78XX

1.5A Three-Terminal Positive Regulators



Descriptions

The L78XX Family monolithic 3-terminal positive voltage regulators employ internal current limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliverover 1.5A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination ofnoise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

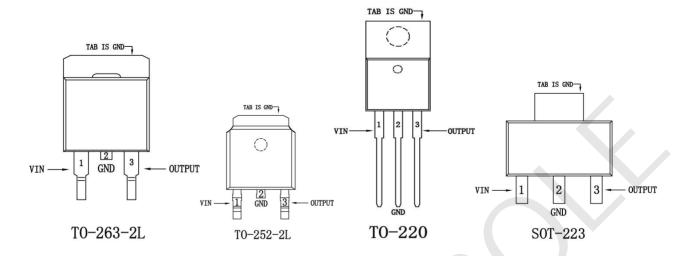
The chips are available in TO-220,TO-263-2L, TO-252-2L and SOT-223 package.

Features

- Output Current up to 1.5A
- Output Voltages of 5,6,8,9,12,15,18,24V
- > Thermal Overload Protection Short Circuit Protection
- Output Transistor Safe Operating area (SOA)Protection

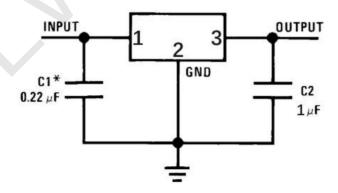
Application

- Industrial Power Supplies
- SMPS Post Regulation
- HVAC Systems
- AC Inventors
- > Test and Measurement Equipment
- Brushed and Brushless DC Motor Drivers
- Solar Energy String Invertors



Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW L7805CV	TO-220	L7805CV	Tube	1000Pcs/Box
XBLW L7806CV	TO-220	L7806CV	Tube	1000Pcs/Box
XBLW L7808V	TO-220	L7808CV	Tube	1000Pcs/Box
XBLW L7809CV	TO-220	L7809CV	Tube	1000Pcs/Box
XBLW L7812CV	TO-220	L7812CV	Tube	1000Pcs/Box
XBLW L7815CV	TO-220	L7815CV	Tube	1000Pcs/Box
XBLW L7818CV	TO-220	L7818CV	Tube	1000Pcs/Box
XBLW L7824CV	TO-220	L7824CV	Tube	1000Pcs/Box
XBLW L7805MDTR	TO-252-2L	L7805M	Tape	2500Pcs/Reel
XBLW L7806MDTR	TO-252-2L	L7806M	Tape	2500Pcs/Reel
XBLW L7808MDTR	TO-252-2L	L7808M	Tape	2500Pcs/Reel
XBLW L7809MDTR	TO-252-2L	L7809M	Таре	2500Pcs/Reel
XBLW L7812MDTR	TO-252-2L	L7812M	Tape	2500Pcs/Reel
XBLW L7815MDTR	TO-252-2L	L7815M	Tape	2500Pcs/Reel
XBLW L7818MDTR	TO-252-2L	L7818M	Tape	2500Pcs/Reel
XBLW L7824MDTR	TO-252-2L	L7824M	Tape	2500Pcs/Reel
XBLW L7805SDTR	SOT-223	L7805S	Tape	2500Pcs/Reel
XBLW L7806SDTR	SOT-223	L7806S	Tape	2500Pcs/Reel
XBLW L7808SDTR	SOT-223	L7808S	Tape	2500Pcs/Reel
XBLW L7809SDTR	SOT-223	L7809S	Tape	2500Pcs/Reel
XBLW L7812SDTR	SOT-223	L7812S	Tape	2500Pcs/Reel
XBLW L7815SDTR	SOT-223	L7815S	Таре	2500Pcs/Reel
XBLW L7818SDTR	SOT-223	L7818S	Таре	2500Pcs/Reel
XBLW L7824SDTR	SOT-223	L7824S	Таре	2500Pcs/Reel
XBLW L7805CDTR	TO-263-2L	L7805	Таре	800Pcs/Reel
XBLW L7806CDTR	TO-263-2L	L7806	Tape	800Pcs/Reel
XBLW L7808CDTR	TO-263-2L	L7808	Таре	800Pcs/Reel
XBLW L7809CDTR	TO-263-2L	L7809	Таре	800Pcs/Reel
XBLW L7812CDTR	TO-263-2L	L7812	Таре	800Pcs/Reel
XBLW L7815CDTR	TO-263-2L	L7815	Tape	800Pcs/Reel
XBLW L7818CDTR	TO-263-2L	L7818	Таре	800Pcs/Reel
XBLW L7824CDTR	TO-263-2L	L7824	Tape	800Pcs/Reel


Pin Configuration

Pin Descriptions

PIN NO.	Name	Description
1	VIN	VINSupply Voltage Input
2	GND	GNDGround
3	Output	OutputPower Switching Output
TAB	GND	TABCooling rib

Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit		
Input Voltage	V _{IN}	40	V		
Output Current		I _{OUT}	1.8	A	
	SOT-223		1		
Power Dissipation (T _C =25°C)	TO-252-2L	Po	2	W	
	TO-220/TO-263-2L		4		
Operating Junction Temperature		T _J	-20 ∼125	°C	
Storage Temperature		T_{STG}	-55 ~+150	°C	

Electrical Characteristics (L7805)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O = 350$ mA, $V_I = 10$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 1 \mu F$)

Parameter	Symbol		Conditions		Value	;	Unit
1 wi whicter			Conditions	Min	Typ	Max	CHI
Output Voltage	Vo	$I_{O} = 5 \text{mA} \sim 1$ $V_{I} = 7 \sim 20 \text{V}$	$A,P_D \leq 15 W$	4.75	5	5.25	V
Lina Deculation	A37.	$l_0 = 500 \text{mA} V_1 = 7V \sim 25V$				50	m V
Line Regulation	$\Delta V_{\rm O}$	$1_0 = 1A$	$V_I=8V\sim20V$			100	mV
Load Regulation	A37	T:-250C	$I_0=5\text{mA}\sim1.5\text{A}$			100	V
	$\Delta V_{\rm O}$	Tj=25°C	I _O =250mA~750mA			50	mV
Quiescent Current	IQ	Tj=25°C				6.0	mA
Ovigagent Comment Change	AT	I ₀ =5mA~1A				0.5	A
Quiescent Current Change	ΔI_Q	I ₀ =200mA,V	$V_{\rm I} = 8 \sim 25 {\rm V}$			0.8	mA
Output Noise Voltage	V _N	f=10Hz~100	0KHz		40		μV
Ripple Rejection	RR	f=120Hz,V _I =	-8∼18V		80		dB
Dropout Voltage	V_{D}	Tj=25°C,I _O =	= 500mA		2		V
Short Circuit Current	Isc	Tj=25°C ,V	/ _I =35V		0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7806)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O = 350$ mA, $V_I = 11$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 1 \mu F$)

D	Cbl	Conditions		Value			IImi4
Parameter	Symbol		Conditions		Тур	Max	Unit
Output Voltage	Vo	$I_O = 5 \text{mA} \sim 1 \text{A}$ $V_I = 8 \sim 20 \text{V}$.,P _D ≤ 15 W	5.7	6	6.3	V
Line Deculation	A3 7.	$l_0 = 500 \text{mA}$ $V_1 = 8V \sim 25V$				50	
Line Regulation	$\Delta V_{\rm O}$	$l_{\rm O} = 1$ A	V_I =9 V \sim 20 V			100	mV
Load Regulation	A 3.7	T:-250C	$I_0 = 5 \text{mA} \sim 1.5 \text{A}$			100	
	$\Delta V_{\rm O}$	Tj=25°C	I _O =250mA~750mA			50	mV
Quiescent Current	IQ	Tj=25°C				6.0	mA
Ovices and Comment Change	AT	$I_0=5\text{mA}\sim 1\text{A}$				0.5	A
Quiescent Current Change	ΔI_Q	I _O =200mA,V _I =	=9~25V			0.8	mA
Output Noise Voltage	V_{N}	f=10Hz~100	KHz		40		μV
Ripple Rejection	RR	f=120Hz,V _I =9~18V			80		dB
Dropout Voltage	V_{D}	$Tj=25$ °C, $I_O = 500$ mA			2		V
Short Circuit Current	I_{SC}	Tj=25°C ,V _I =35V			0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7808)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O=350$ mA, $V_I=14$ V, unless otherwise specified, $C_I=0.33\mu\text{F}$, $C_O=1\mu\text{F}$)

Danamatan	Cymbal	Conditions			Value	•	Unit
Parameter	Symbol			Min	Тур	Max	Unit
Output Voltage	Vo	$I_0 = 5\text{mA} \sim 1\text{A}$ $V_1 = 10 \sim 23\text{V}$,P _D ≤ 15 W	7.6	8	8.4	V
Line Deculation	A.V	$l_0 = 500 \text{mA}$	$V_I=10V\sim25V$			50	mV
Line Regulation	ΔVo	$l_0 = 1A$	$V_I=11V\sim20V$			100	III V
Load Domilation	A 37.	AV T:-259C	$I_0 = 5 \text{mA} \sim 1.5 \text{A}$			100	
Load Regulation	ΔV_{O}	Tj=25°C	$I_0 = 250 \text{mA} \sim 750 \text{mA}$			50	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Oviggent Compart Change	Α.τ.	$I_0=5$ m $A\sim 1$ A				0.5	A
Quiescent Current Change	ΔI_Q	I _O =200mA,V _I =	=11~25V			0.8	mA
Output Noise Voltage	$V_{\rm N}$	f=10Hz~100H	KHz		40		μV
Ripple Rejection	RR	f=120Hz,V _I =11~18V			80		dB
Dropout Voltage	V_{D}	$Tj=25$ °C, $I_O = 500$ mA			2		V
Short Circuit Current	I _{SC}	Tj=25°C ,V _I =35V			0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7809)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O = 350$ mA, $V_I = 15$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 1 \mu F$)

Domomoton	Crumb al	Conditions			Value	<u>,</u>	Unit
Parameter	Symbol		Conditions		Тур	Max	Unit
Output Voltage	Vo	$I_0=5\text{mA}\sim 1\text{A}$ $V_1=11\sim 24\text{V}$,P _D ≤ 15 W	8.45	9	9.55	V
Line Regulation (Note)	ΔVo	$l_0 = 500 \text{mA}$	$V_I=11V\sim25V$			100	mV
Line Regulation(Note)	Δνο	$l_{\rm O} = 1$ A	$V_I=12V\sim18V$			50	III V
Load Doculation (Note)	A3 7.	T:-25°C	$I_0 = 5 \text{mA} \sim 1.5 \text{A}$			180	m V
Load Regulation(Note)	ΔV_{O}	Tj=25°C	I _O = 250mA~750mA			90	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Ovices and Comment Change	Α.Τ.	$I_0=5\text{mA}\sim 1\text{A}$				0.5	A
Quiescent Current Change	ΔI_Q	I _O =200mA,V _I =	=11~25V			0.8	mA
Output Noise Voltage	V_{N}	f=10Hz~100H	KHz		52		μV
Ripple Rejection	RR	f=120Hz,V _I =1	2~23V		80		dB
Dropout Voltage	V_{D}	Tj=25°C,I _O = 5	500mA		2		V
Short Circuit Current	I_{SC}	Tj=25°C ,V ₁ =	=35V		0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7812)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O=350$ mA, $V_I=19$ V, unless otherwise specified, $C_I=0.33\mu\text{F}$, $C_O=1\mu\text{F}$)

Danamatan	Cymbal	Conditions		Value			Unit
Parameter	Symbol			Min	Тур	Max	Unit
Output Voltage	Vo	$I_0=5\text{mA}\sim 1\text{A}$ $V_1=14\sim 27\text{V}$,P _D ≤ 15 W	11.4	12	12.6	V
Lina Regulation (Note)	A.V	$l_{\rm O} = 500 \mathrm{mA}$	$V_I=14V\sim30V$			100	mV
Line Regulation(Note)	ΔVo	$l_0 = 1A$	$V_I=15V\sim24V$			50	III V
Load Dagulation (Nata)	A37	T:-250C	$I_0 = 5 \text{mA} \sim 1.5 \text{A}$			240	
Load Regulation(Note)	ΔV_{O}	Tj=25°C	$I_0 = 250 \text{mA} \sim 750 \text{mA}$			120	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Oning and Change Change	Δ.τ.	I_0 =5mA \sim 1A				0.5	A
Quiescent Current Change	ΔI_Q	$I_0=200 \text{ mA}, V_I=14.5\sim 30 \text{ M}$	=14.5~30V			0.8	mA
Output Noise Voltage	$V_{\rm N}$	f=10Hz~100H	KHz		75		μV
Ripple Rejection	RR	f=120Hz,V _I =1	f=120Hz,V _I =15~25V		80		dB
Dropout Voltage	V_{D}	$Tj=25$ °C, $I_O = 500$ mA			2		V
Short Circuit Current	I _{SC}	Tj=25°C ,V ₁ =35V			0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7815)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O = 350$ mA, $V_I = 23$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 1 \mu F$)

Donomoton	Cymbol		Conditions		Value		Unit
Parameter	Symbol	•			Тур	Max	Unit
Output Voltage	Vo	$I_0 = 5 \text{mA} \sim 1.0$ $V_1 = 17 \sim 30 \text{V}$	$A, P_D \leqslant 15 W$	14.25	15	15.75	V
Line Regulation (Note)	A 37	$l_0 = 500 \text{mA}$	$V_I=17V\sim30V$			100	m V
Line Regulation(Note)	$\Delta V_{\rm O}$	$l_{\rm O} = 1$ A	V_I =18 V \sim 30 V			50	mV
Load Regulation(Note)	A 3.7	T:-250C	$I_0=5\text{mA}\sim1.5\text{A}$			300	37
	$\Delta V_{\rm O}$	Tj=25°C	$I_0 = 250 \text{mA} \sim 750 \text{mA}$			150	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Onional Community Change	Α.Τ.	$I_0=5$ m $A\sim 1$ A	A			0.5	A
Quiescent Current Change	ΔI_Q	I _O =200mA,V	$I_{I}=17V\sim30V$			0.8	mA
Output Noise Voltage	V_{N}	f=10Hz~100)KHz		100		μV
Ripple Rejection	RR	f=120Hz,V _I =	18~30V		70		dB
Dropout Voltage	V_{D}	Tj=25°C,I _O =	: 500mA		2		V
Short Circuit Current	I _{SC}	Tj=25°C ,V	v ₁ =35V		0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7818)

(Refer to the test circuits, $0 < T_J < +125$ °C, $I_O = 350$ mA, $V_I = 26$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 1 \mu F$)

Danamatan	Cymbal	Conditions		Value			Unit
Parameter	Symbol			Min	Тур	Max	Unit
Output Voltage	Vo	$I_0 = 5\text{mA} \sim 1\text{A}$ $V_1 = 20 \sim 33\text{V}$,P _D ≤ 15 W	17.1	18	18.9	V
Lina Regulation (Note)	ΔVο	$l_{\rm O} = 500 \mathrm{mA}$	V_I =20 V \sim 33 V			100	mV
Line Regulation(Note)	Δνο	$l_0 = 1A$	$V_I=21V\sim30V$			50	III V
Load Pagulation (Nota)	A 37.	AV T:-259C	$I_0 = 5 \text{mA} \sim 1 \text{A}$			360	
Load Regulation(Note)	ΔV_{O}	Tj=25°C	$I_0 = 250 \text{mA} \sim 750 \text{mA}$			180	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Oning and Change Change	Δ.τ.	I_0 =5mA \sim 1A				0.5	mA
Quiescent Current Change	ΔI_Q	I _O =200mA,V _I =	=21V~33V			0.8	
Output Noise Voltage	$V_{\rm N}$	f=10Hz~100H	KHz		100		μV
Ripple Rejection	RR	f=120Hz,V _I =2	f=120Hz,V _I =22~32V		70		dB
Dropout Voltage	V_{D}	$Tj=25$ °C, $I_O = 500$ mA			2		V
Short Circuit Current	I _{SC}	Tj=25°C ,V _I =35V			0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Electrical Characteristics (L7824)

(Refer to the test circuits, $0 < T_J < +125$ °C, I_O =350mA, V_I =33V, unless otherwise specified, C_I = 0.33 μ F, C_O =1 μ F)

Dawamatan	Cymah al	C1'.C		Value			11:4
Parameter	Symbol		onditions	Min	Тур	Max	Unit
Output Voltage	Vo	$I_0=5\text{mA}\sim 1\text{A}$ $V_1=27\sim 38\text{V}$		22.8	24	25.2	V
Lina Damilatian (Nata)	A37	$l_0 = 500 \text{mA}$	V _I =27V~38V			100	
Line Regulation(Note)	$\Delta V_{\rm O}$	$l_{\rm O} = 1$ A	V _I =28V~38V			50	mV
Load Dagulation (Nata)	A 3.7	AV. T:-259C	$I_0 = 5 \text{mA} \sim 1.5 \text{A}$			480	mV
Load Regulation(Note)	$\Delta V_{\rm O}$	Tj=25°C	$I_0 = 250 \text{mA} \sim 750 \text{mA}$			240	mV
Quiescent Current	I_Q	Tj=25°C				6.0	mA
Ovingaant Current Change	Δ1.	$I_0=5\text{mA}\sim 1\text{A}$	$I_0=5\text{mA}\sim 1\text{A}$			0.5	A
Quiescent Current Change	ΔI_Q	I _O =200mA,V _I =	=27V~38V			0.8	mA
Output Noise Voltage	V_N	f=10Hz~100	KHz		170		μV
Ripple Rejection	RR	f=120Hz,V _I =2	28~38V		70		dB
Dropout Voltage	V_{D}	Tj=25°C,I _O = 1	500mA		2		V
Short Circuit Current	I_{SC}	Tj=25°C ,V _I	=35V		0.3		A
Peak Current	I_{PK}	Tj=25°C			1.8		A

Typical Characteristics

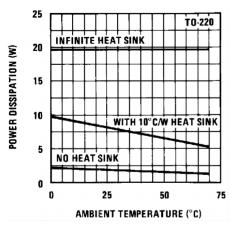
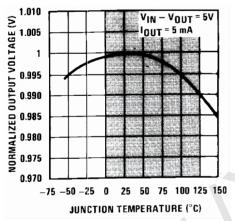



Figure 1 . Maximum Average Power Dissipation

Shaded area refers to L7805, L7812 and L7815.

Figure 3 . Output Voltage (Normalized to 1 V at $T_J = 25$ °C)

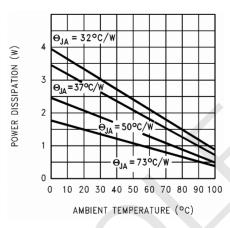


Figure 2 . Maximum Power Dissipation (TO-263)

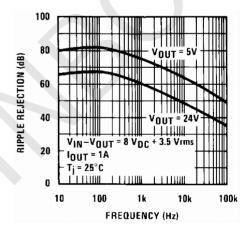


Figure 4 . Ripple Rejection

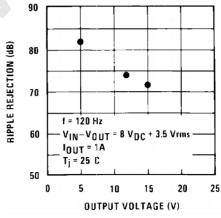
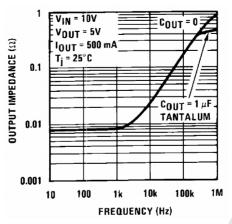
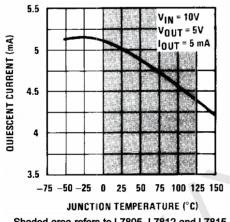
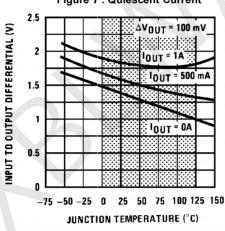


Figure 5 . Ripple Rejection

Typical Characteristics (continued)


Figure 6 . Output Impedance

3

Shaded area refers to L7805, L7812 and L7815.

Figure 7 . Quiescent Current

Shaded area refers to L7805, L7812 and L7815.

Figure 9 . Dropout Voltage

2.5 T_j = 25°C

T_j = 25°C

T_j = 150°C

0.5

T_j = 150°C

0 5 10 15 20 25 30 39

INPUT TO OUTPUT DIFFERENTIAL (V)

ΔV_{OUT} = 100 mV

Figure 8 . Peak Output Current

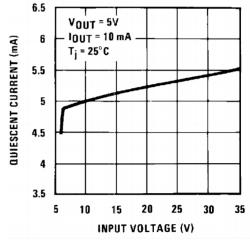
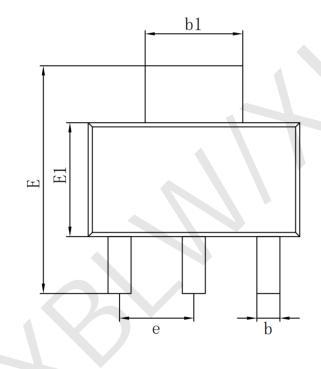


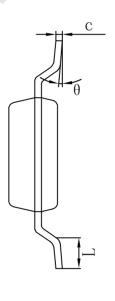
Figure 10. Quiescent Current

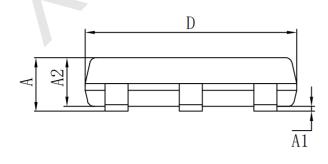
Package Information

· T0-220

Size	Dimensions I	n Millimeters	Size	Dimension	ns In Inches
Symbol	Min(mm)	Max (mm)	Symbol	Min(in)	Max(in)
A	4. 150	4. 250	A	0. 163	0.167
С	0. 985	1. 015	С	0. 039	0.040
C1	0. 365	0.395	C1	0.014	0.016
D	10.03	10. 10	D	0.395	0.398
E	15.02	15. 75	Е	0.591	0.620
Ф	3. 700	3. 900	Ф	0.146	0.154
e	2. 540	(TYP)	е	0.110	00 (TYP)
b	0.770	0.830	b	0.030	0.033
b1	1. 230	1.290	b1	0.048	0.051
L	13.00	14. 00	L	0.512	0.551
L1	3. 500	3. 900	L1	0. 138	0.154
E	D L1 L1 e	b1			


· T0-252-2L


Size	Dimensions	In Millimeters	Size	Dimension	s In Inches
	Min(mm)	Max(mm)	Symbol	Min (mm)	Max (mm)
A	2. 200	2.400	A	0. 087	0.094
A1	0.000	0.127	A1	0.000	0.005
В	1. 350	1. 650	B	0. 053	0.065
b	0. 500	0.700	b	0. 020	0.028
b1	0.700	0.900	b1	0. 028	0.035
	0.430	0.580		0. 017	0. 033
С	0. 430	0.580	C	0. 017	0. 023
<u>c1</u>			c1		
D	6. 350	6.500	D	0. 250	0. 262
D1	5. 200	5. 400	D1	0. 205	0. 213
Е	5. 400	5. 700	Е	0. 213	0. 224
е	2	300 (TYP)	е	0.155	0. 091 (TYP)
e1	4. 500	4.700	e1	0.177	0. 185
L	9. 500	9.900	L	0.374	0.390
L1	2. 550	2.900	L1	0. 100	0. 114
L2	1.400	1.780	L2	0.055	0.070
				b1	b
		<u>:1</u>		e1	



· S0T-223

Size	Dimensions In Millimeters		Size	Dimensions In Inches	
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
A		1.800	A		0.071
A1	0.020	0.100	A1	0.001	0.004
A2	1.500	1. 700	A2	0.059	0.067
b	0.660	0.840	b	0.026	0.033
b1	2.900	3.100	b1	0.114	0. 122
С	0.230	0.350	С	0.009	0.014
D	6.300	6.700	D	0. 248	0. 264
Е	6.700	7.300	Е	0. 264	0. 287
E1	3.300	3.700	E1	0. 130	0. 146
е	2. 30	2. 300 (BSC)		0. 091 (BSC)	
L	0.750		L	0.030	
θ	0°	10°	θ	0°	10°

· T0-263-2L

Size Symbol A A1	Dimensions In Millimeters		Size	Dimensions In Inches	
A	Min(mm)	Max (mm)	Symbol	Min(in)	Max(in)
	4.470	4. 670	A	0. 176	0.184
	0.000	0. 150	A1	0.000	0.006
В	1.120	1.420	В	0.044	0.056
b	0.710	0.910	b	0. 028	0.036
b1	1. 170	1. 370	b1	0.046	0.054
c	0.310	0. 530	c	0.012	0.021
c1	1. 170	1. 370	c1	0.046	0.054
D	10.01	10.31	D	0.394	0.406
E	8.700	9. 400	E	0. 343	0.370
e	2. 54	O(TYP)	е		00 (TYP)
e1	4.980	5. 180	e1	0. 196	0.204
L	14.94	15.50	L	0.588	0.610
L1	4.950	5. 450	L1	0. 195	0. 215
L2	2.340	2. 740	L2	0. 092	0.860
V		O (REF)	V	0. 2	20 (REF)
Φ	0°	8°	Ф	0°	8°
B	Db		A c1 ——A1		V

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)