

Product Specification

XBLW SN74LS163

Presettable Synchronous 4-bit Binary Counter; Synchronous Reset

WEB | www.xinboleic.com >

Downloaded From Oneyac.com

Description


The SN74LS163 is a synchronous presettable binary counter with an internal look-head carry. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP). The outputs (Q0 to Q3) of the counters maybe preset to a HIGH or LOW. A LOW at the parallel enable input (\overline{PE}) disables the counting action. It causes the data at the data inputs (D0 to D3) to be loaded into the counter on the positive-going edge of the clock. Preset takes place regardless of the levels at count enable inputs (CEP and CET). A LOW at the master reset input (\overline{MR}) sets Q0 to Q3 LOW after the next positive-going transition on the clock input (CP). This action occurs regardless of the levels at input pins \overline{PE} , CET and CEP. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate. The look-ahead carry simplifies serial cascading of the counters. Both CEP and CET must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH output of Q0. This pulse can be used to enable the next cascaded stage. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess ofV_{cc}.

The CP to TC propagation delay and CEP to CP set-up time determine the maximum clock frequency for the cascaded counters according to the following formula:

 $f_{max} = 1/(t_{P(max)}(CP \text{ to }TC)+t_{SU}(CEP \text{ to }CP))$

Features

- Synchronous counting and loading
- > 2 count enable inputs for n-bit cascading
- Synchronous reset
- Positive-edge triggered clock
- Specified from -20°C to +85°C
- Packaging information: DIP-16/SOP-16/TSSOP-16

DIP-16

SOP-16

TSSOP-16

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74LS163N	DIP-16	74LS163N	Tube	1000Pcs/Box
XBLW SN74LS163DTR	SOP-16	74LS163	Таре	2500Pcs/Reel
XBLW SN74LS163TDTR	TSSOP-16	74LS163	Таре	3000Pcs/Reel

Block Diagram

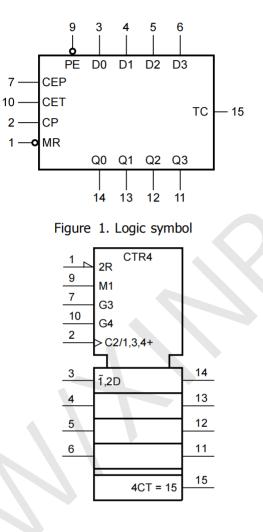


Figure 2. IEC logic symbol

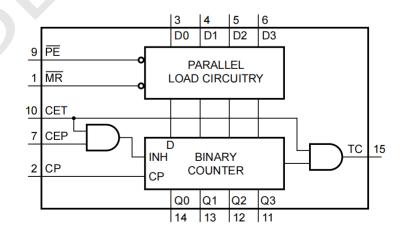


Figure 3.Functional diagram

XBLW SN74LS163

Presettable Synchronous 4-bit Binary Counter; Synchronous Reset

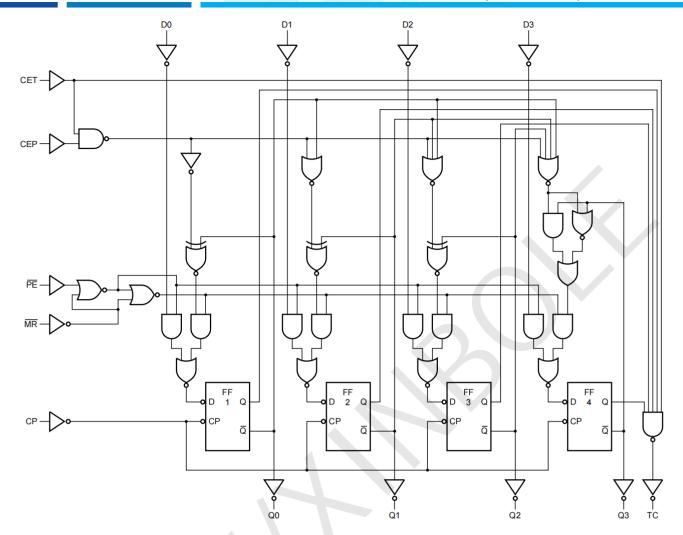


Figure 4. Logic diagram

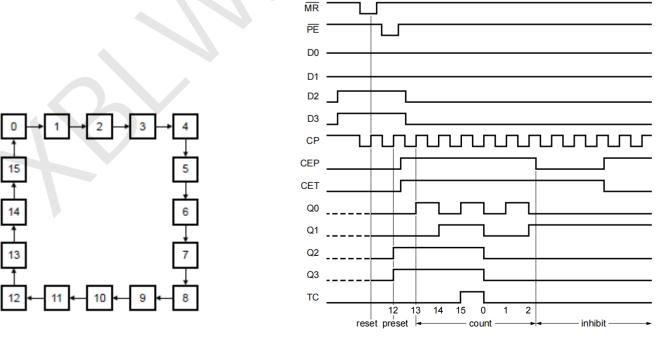
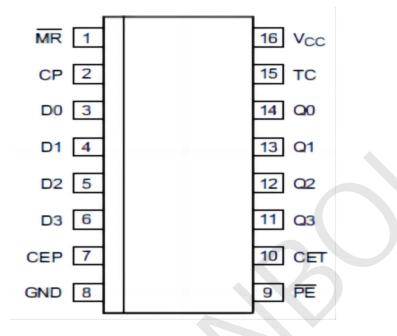



Figure 5. State diagram

Figure 6. Typical timing sequence

Pin Configurations

Pin Description

Pin No.	Pin Name	Description		
1	MR	asynchronous master reset (active LOW)		
2	СР	clock input (LOW-to-HIGH, edge triggered)		
3	D0	data input		
4	D1	data input		
5	D2	data input		
6	D3	data input		
7	CEP	count enable input		
8	GND	ground (0V)		
9	– PE	parallel enable input (active LOW)		
10	CET	count enable carry input		
11	Q3	flip-flop output		
12	Q2	flip-flop output		
13	Q1	flip-flop output		
14	Q0	flip-flop output		
15	тс	terminal count output		
16	V _{CC}	supply voltage		

Function Table

Onersting	Input						Output	
Operating mode	MR	СР	СЕР	CET	PE	Dn	Qn	тс
reset (clear)	I	1	X	Х	Х	X	L	L
	h	Ť	x	х	I	I	L	L
parallel load	h	↑	x	х	I	h	н	L
count	h	1	h	h	h	x	count	[2]
	h	Х	1	х	h	x	Qn	L
Hold(do nothing)	h	Х	X	I	h	Х	qn	L

Note:

[1] H=HIGH voltage level; L=LOW voltage level; X=don't care; \uparrow =LOW-to-HIGH clock transition;

I=LOWvoltage level one set-up time prior to the LOW-to-HIGH clock transition;

h=HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

q=lower case letters indicate the state of the referenced output one set-up time prior to the LOW- to-HIGH CP transition.

[2] The TC output is HIGH when CET is HIGH and the counter is at terminal count (HHHH).

Electrical Parameter

Absolute Maximum Ratings

(Voltages are referenced to GND(ground=0V), unless otherwise specified.)

Parameter	Symbol		Conditions	Min.	Max.	Unit
supply voltage	Vcc		-		+7.0	V
input clamping current	I _{IK}	VI < -0	$V_{\rm I}$ < -0.5V or $V_{\rm I}$ > V _{CC} +0.5V		±20	mA
output clamping current	Іок	Vo < -0	$V_0 < -0.5V$ or $V_0 > V_{CC}+0.5V$		±20	mA
output current	Io	-0.5	$-0.5V < V_0 < V_{CC} + 0.5V$		±25	mA
supply current	I _{CC}		-		+50	mA
ground current			-	-50	-	mA
storage temperature	T _{stg}		_		+150	°C
total power dissipation	P _{tot}		-		500	mW
Coldering temperature	τ.	100	DIP	24	45	
Soldering temperature	ΤL	105	10s SOP/TSSOP		50	°C

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	Vcc	-	2.0	5.0	6.0	V
input voltage	VI	-	0	-	Vcc	V
output voltage	Vo	-	0	-	V _{CC}	V
		V _{CC} =2.0V	-	-	625	ns/V
input transition rise and fall rate	Δt/ΔV	V _{CC} =4.5V	-	1.67	139	ns/V
		V _{CC} =6.0V	-	-	83	ns/V
ambient temperature	T _{amb}	-	-20	-	+85	°C

DC Characteristics 1

 $(T_{amb}=25^{\circ}C, voltages are referenced to GND (ground=0V), unless otherwise specified.)$

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit
		,	V _{CC} =2.0V	1.5	1.2	-	V
HIGH-level input voltage	VIH	, N	V _{CC} =4.5V	3.15	2.4	-	V
voltage	VIH	``````````````````````````````````````	V _{CC} =6.0V	4.2	3.2	-	V
		, v	V _{CC} =2.0V		0.8	0.5	V
LOW-level input voltage	VIL	Ň	Vcc=4.5V	-	2.1	1.35	V
	VIL	, v	Vcc=6.0V	-	2.8	1.8	V
			Io=-20uA; Vcc=2.0V	1.9	2.0	-	V
	Vон		I_0 =-20uA; V _{CC} =4.5V	4.4	4.5	-	V
HIGH-level output voltage		$V_{I} = V_{IH} \text{ or } V_{IL}$	Io=-20uA; Vcc=6.0V	5.9	6.0	-	V
			Io=-4.0mA; Vcc=4.5V	3.98	4.32	-	V
			Io=-5.2mA; Vcc=6.0V	5.48	5.81	-	V
			Io=20uA; Vcc=2.0V	-	0	0.1	V
			Io=20uA; Vcc=4.5V	-	0	0.1	V
LOW-level output voltage	Vol	$V_{I} = V_{IH} \text{ or } V_{IL}$	Io=20uA; Vcc=6.0V	-	0	0.1	V
output voltage			$I_0=4.0mA; V_{CC}=4.5V$	-	0.15	0.26	V
			$I_0=5.2mA; V_{CC}=6.0V$	-	0.16	0.26	V
nput leakage current	ŀ	$V_{I}=V_{CC}$ or GND; $V_{CC}=6.0V$		-	-	±1.0	uA
supply current	Icc	V _I =V _{CC} or GN	ND; $I_0=0A$; $V_{CC}=6.0V$	-	-	8.0	uA
input capacitance	CI		_	-	3.5	-	pF

DC Characteristics 2

 $(T_{amb}=-20^{\circ}C \text{ to }+85^{\circ}C, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit
		V _{CC} =2.0V		1.5	-	-	V
HIGH-level input voltage	VIH	١	/cc=4.5V	3.15	-	-	V
voltage	VIH	١	/cc=6.0V	4.2	-	-	V
		١	/cc=2.0V	-	-	0.5	V
LOW-level input voltage	VIL	١	/cc=4.5V	-	-	1.35	V
voltage	VIL	۱	V _{CC} =6.0V		-	1.8	V
	V _{он}	$V_{\rm I}$ = $V_{\rm IH}$ or $V_{\rm IL}$	Io=-20uA; Vcc=2.0V	1.9	-	-	V
HIGH-level output voltage			Io=-20uA; Vcc=4.5V	4.4	-	-	V
			Io=-20uA; Vcc=6.0V	5.9	-	-	V
output voltage			Io=-4.0mA; Vcc=4.5V	3.84	-	-	V
			Io=-5.2mA; Vcc=6.0V	5.34	-	-	V
			Io=20uA; Vcc=2.0V	-	-	0.1	V
			Io=20uA; Vcc=4.5V	-	-	0.1	V
LOW-level output voltage	Vol	$V_{I} = V_{IH} \text{ or } V_{IL}$	Io=20uA; Vcc=6.0V	-	-	0.1	V
output voltage			Io=4.0mA; Vcc=4.5V	-	-	0.33	V
			Io=5.2mA; Vcc=6.0V	-	-	0.33	V
input leakage current	Ŀ	VI=VCC O	r GND; Vcc=6.0V	-	-	±1.0	uA
supply current	I _{CC}	VI=VCC or GN	ID; Io=0A; Vcc=6.0V	-	-	80	uA

AC Characteristics 1

(T_{amb}=25°C, GND=0V, C_L=50pF, unless otherwise specified.)

Parameter	Symbol	Con	ditions	Min.	Тур.	Max.	Unit	
			Vcc=2.0V	-	55	185	ns	
		CP to Qn;	Vcc=4.5V	-	20	37	ns	
		see Figure 8	V _{CC} =5.0V; C _L =15pF	-	17	-	ns	
			Vcc=6.0V	-	16	31	ns	
			Vcc=2.0V	-	69	215	ns	
			Vcc=4.5V	-	25	43	ns	
propagation delay	t _{pd}	CP to TC; see Figure 8	V _{CC} =5.0V; C _L =15pF	-	21	-	ns	
		See Figure 0	Vcc=6.0V	-	20	37	ns	
			Vcc=2.0V	-	36	120	ns	
			Vcc=4.5V	-	13	24	ns	
		CET to TC; see Figure 9	V _{CC} =5.0V; C _L =15pF	-	11	-	ns	
		See Figure 9	V _{CC} =6.0V	-	10	20	ns	
			Vcc=2.0V	-	19	75	ns	
transition time	tı	see Figure 8 and Figure 9	Vcc=4.5V	- /	7	15	ns	
		and righte 9	Vcc=6.0V	-	6	13	ns	
			Vcc=2.0V	80	17	-	ns	
pulse width	tw	CP HIGH or LOW; see Figure 8	Vcc=4.5V	16	6	-	ns	
		see rigure o	Vcc=6.0V	14	5	-	ns	
		MR, Dn to CP; see Figure 10, 11	Vcc=2.0V	80	22	-	ns	
			Vcc=4.5V	16	8	-	ns	
			Vcc=6.0V	14	6	-	ns	
			Vcc=2.0V	80	17	-	ns	
set-up time	t su	PE to CP;	Vcc=4.5V	16	6	-	ns	
		see Figure 10	V _{CC} =6.0V	14	5	-	ns	
			Vcc=2.0V	175	58	-	ns	
		CEP, CET to CP; see Figure 12	Vcc=4.5V	35	21	-	ns	
			V _{CC} =6.0V	30	17	-	ns	
		Dn, PE, CEP,	Vcc=2.0V	0	-14	-	ns	
hold time	+.	CET,	Vcc=4.5V	0	-5	-	ns	
	t _h	MR to CP; see Figure 10, 11,	V _{CC} =6.0V	0	-4	-	ns	
			V _{CC} =2.0V	5	15	-	MHz	
			V _{CC} =4.5V	27	46	-	MHz	
maximum frequency	f _{max}	CP; see Figure 8	V _{CC} =5.0V; C _L =15pF	-	51	-	MHz	
nequency	~		V _{CC} =6.0V	32	55	-	MHz	
power dissipation capacitanc e	Cpd	f _i = 1MHz; V _{CC} =5	.0V; V_I =GND to V_{CC}	-	33	-	pF	

Note:

[1] $t_{\mbox{\scriptsize pd}}$ is the same as $t_{\mbox{\scriptsize PLH}}$ and $t_{\mbox{\scriptsize PHL}}.$

[2] t_{t} is the same as t_{THL} and t_{TLH}

[3] C_{PD} isused to determine the dynamic power dissipation (P_D in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i =input frequency in MHz; f_o =output frequency in MHz;

 C_L =output load capacitance in pF; V_{CC} =supply voltage in V;

N=number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ =sum of outputs.

AC Characteristics 2

 $(T_{amb}=-20^{\circ}C \text{ to } +85^{\circ}C, \text{ GND}=0V, C_{L}=50\text{ pF}, \text{ unless otherwise specified.})$

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
			V _{CC} =2.0V	-	-	230	ns
		CP to Qn; see Figure 8	Vcc=4.5V	-	-	46	ns
			V _{CC} =6.0V	-	-	39	ns
			V _{CC} =2.0V	-	-	270	ns
propagation delay	t _{pd}	CP to TC; see Figure 8	Vcc=4.5V	-	-	54	ns
			$V_{CC}=6.0V$	-	-	46	ns
			$V_{CC}=2.0V$	-	-	150	ns
		CET to TC; see Figure 9	$V_{CC}=4.5V$	-	-	30	ns
			V _{CC} =6.0V	-	-	26	ns
			V _{CC} =2.0V	-	-	95	ns
transition time	tı	see Figure 8 and Figure 9	$V_{CC}=4.5V$		-	19	ns
			Vcc=6.0V	-	-	16	ns
			Vcc=2.0V	100	-	-	ns
pulse width	tw	CP HIGH or LOW; see Figure 8	Vcc=4.5V	20	-	-	ns
		See Figure 0	$V_{CC}=6.0V$	17	-	-	ns
		-	V _{CC} =2.0V	100	-	-	ns
		MR, Dn to CP; see Figure 10, 11	Vcc=4.5V	20	-	-	ns
		See Figure 10, 11	Vcc=6.0V	17	-	-	ns
			$V_{CC}=2.0V$	100	-	-	ns
set-up time	t _{su}	PE to CP;	Vcc=4.5V	20	-	-	ns
		see Figure 10	$V_{CC}=6.0V$	17	-	-	ns
			V _{CC} =2.0V	220	-	-	ns
		CEP, CET to CP; see Figure 12	$V_{CC}=4.5V$	44	-	-	ns
		See Figure 12	$V_{CC}=6.0V$	37	-	-	ns
		Dn, PE, CEP, CET	$V_{CC}=2.0V$	0	-	-	ns
hold time	th	MR to CP;	$V_{CC}=4.5V$	0	-	-	ns
		see Figure 10, 11, 12	Vcc=6.0V	0	-	-	ns
			V _{CC} =2.0V	4	-	-	MHz
maximum frequency	f _{max}	CP; see Figure 8	$V_{CC}=4.5V$	22	-	-	MHz
			V _{CC} =6.0V	26	-	-	MHz

Note:

 $\label{eq:tpd} \end{tabular} \end{tabular$

Testing Circuit

AC Testing Circuit

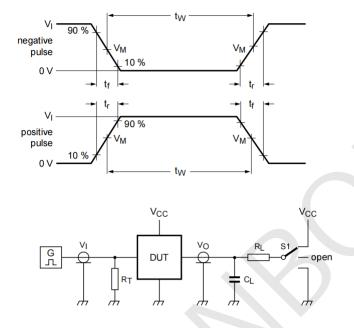


Figure 7. Test circuit for measuring switching times

Definitions for test circuit:

 $C_{\mbox{\tiny L}}\mbox{=}\mbox{Load}$ capacitance including jig and probe capacitance.

 R_T =Termination resistance should be equal to the output impedance Z_o of the pulse generator. R_L =Load resistance.

S1=Test selection switch

AC Testing Waveforms

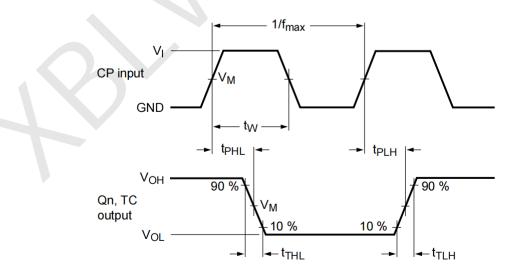


Figure 8. The clock (CP) to outputs (Qn, TC) propagation delays, pulse width, output transition times and maximum frequency

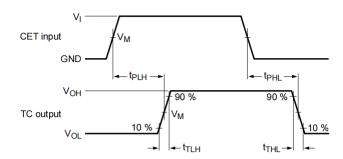


Figure 9. The count enable carry input (CET) to terminal count output (TC) propagation delays and output transition times

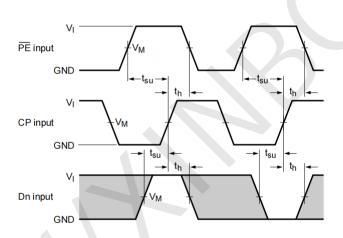


Figure 10. The data input (Dn) and parallel enable input (PE) set-up and hold times

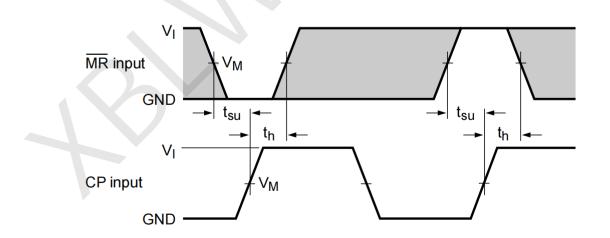


Figure 11. The master reset (MR) set-up and hold times

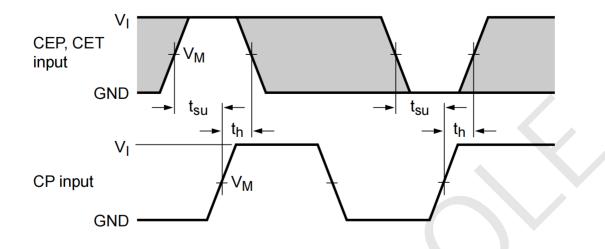
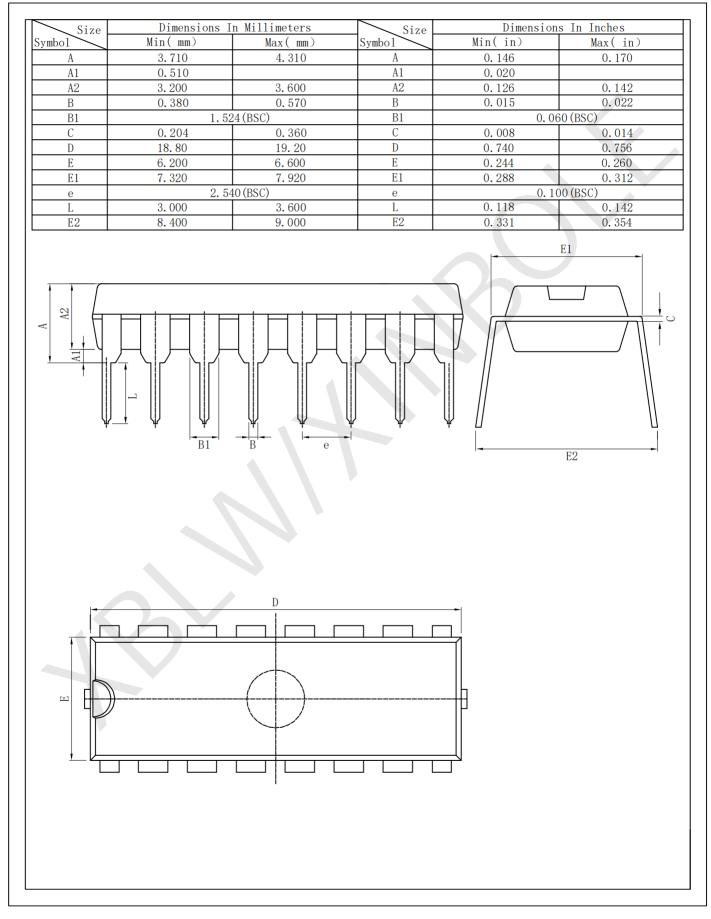


Figure 12. The count enable input (CEP) and count enable carry input (CET) set-up and hold times

Measurement Points

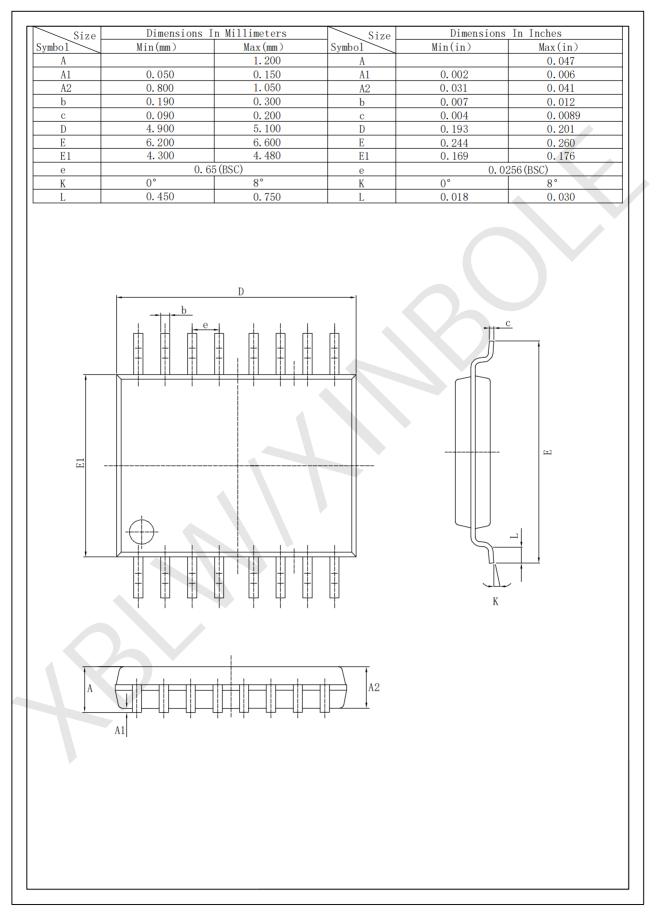
	In	Output	
Туре	VI	VM	Vм
SN74LS163	GND to Vcc	0.5 × V _{CC}	0.5 ×V _{CC}


Test Data

	Input		Lo	S1 position	
Туре	VI	tr,tr	C∟	RL	t _{PHL} , t _{PLH}
SN74LS163	Vcc	6ns	15pF, 50pF	1kΩ	open

Package Information

• DIP-16



· SOP-16

	Dimone	ions In Milli	meters		Dimor	nsions In Inc	ches
Size	Min(mm)	Nom(mm)	Max(mm)	SizeSymbol	Min(in)	Nom(in)	Max(in)
A	1.500	1. 600	1.700	A	0.059	0.063	0.067
Al	0.100	0.150	0.250	A1	0.003	0.003	0.010
A2	1.400	1. 450	1.500	A2	0.055	0.000	0.059
A3	0.600	0.650	0.700	A3	0.024	0.026	0.028
b	0.300	0.400	0.500	b	0.024	0.020	0.020
c	0.150	0.200	0.250	c	0.006	0.008	0.010
D	9.800	9.900	10.00	D	0.386	0.390	0. 394
E	5.800	6.000	6.200	E	0.228	0.236	0.244
E1	3.850	3.900	3.950	E1	0.152	0.154	0.156
e	0.000	1. 27 (BSC)	0.000	e	0.102	0.050 (BSC)	0.100
L	0.500	0.600	0.700	L	0.020	0.024	0.028
L1	0.000	1.05 (BSC)	000	L1	0.010	0. 041 (BSC)	
θ	0°	4°	8°	θ	0°	4°	8°
	<u>↓</u> 	<u> </u>	D		A1-		
	C c					□ ^{0.254}	:

· TSS0P-16

Statement

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW product has not been licensed for life support, military and aerospace applications, and therefore XBLW is not responsible for any consequences arising from its use in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)