

Product Specification

XBLW SN74LS190

Presettable Synchronous BCD Decade up/down Counter

WEB | www.xinboleic.com

Downloaded From Oneyac.com

Description

The SN74LS190 is a asynchronously presettable up/down BCD decade counters. They contain four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation.

Asynchronous parallel load capability permits the counter to be preset to any desired number. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs when the parallel load ($\bar{P}L$) input is LOW. As indicated in the function table, this operation overrides the counting function.

Counting is inhibited by a HIGH level on the count enable (\overline{CE}) input. When \overline{CE} is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (\overline{U} /D) input signal determines the direction of counting as indicated in the function table. The $C\overline{E}$ input may go LOW when the clock is in either state, however, the LOW-to-HIGH $C\overline{E}$ transition must occur only when the clock is HIGH. Also, the \overline{U}/D input should be changed only when either CE or CP is HIGH.

Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock (\overline{RC}). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches "9" in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until \overline{U}/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the \overline{RC} output. When TC is HIGH and \overline{CE} is LOW, the \overline{RC} output follows the clock pulse (CP). This feature simplifies the design ofmultistage counters as shown in Figure 5 and 6.

In Figure5, each RC output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH On CE inhibits the RC output pulse as indicated in the function table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications.

Figure 6 shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the \overline{RC} output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock.

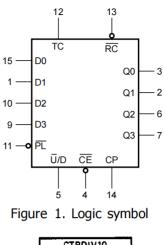
In Figure.7, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the \overline{CE} input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own \overline{CE} signal therefore the simple inhibit scheme ofFigure 5 and 6 does not apply.

Features

- > Synchronous reversible counting
- > Asynchronous parallel load
- > Count enable control for synchronous expansion
- Single up/down control input
- Specified from -20℃ to +85℃
- Packaging information: DIP-16/SOP-16/TSSOP-16

DIP-16

TSSOP-16


Ordering	Information
----------	-------------

S0P-16

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74LS190N	DIP-16	74LS190N	Tube	1000Pcs/Box
XBLW SN74LS190DTR	SOP-16	74LS190	Таре	2500Pcs/Reel
XBLW SN74LS190TDTR	TSSOP-16	74LS190	Таре	3000Pcs/Reel

Block Diagram

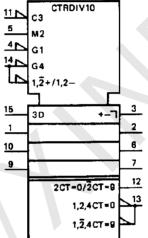


Figure 2. IEC logic symbol

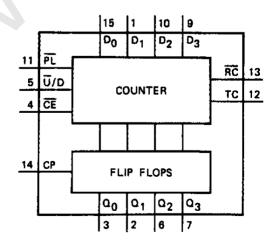
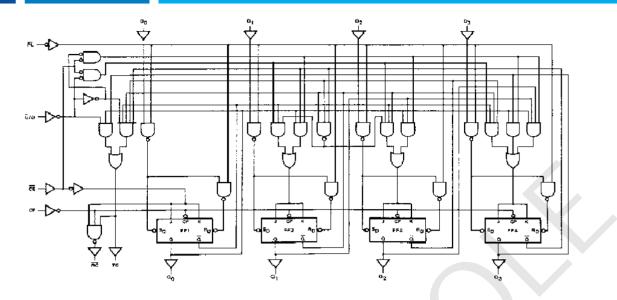



Figure 3.Functional diagram

XBLW SN74LS190 Presettable Synchronous BCD Decade up/down Counter

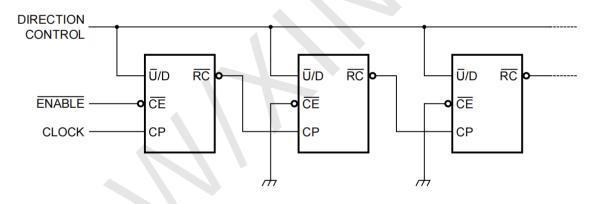
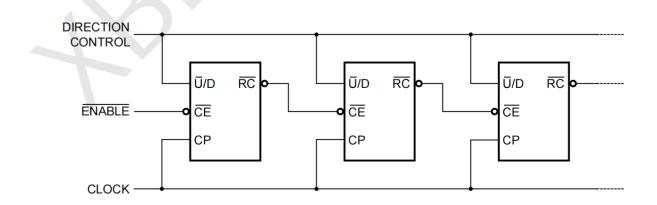
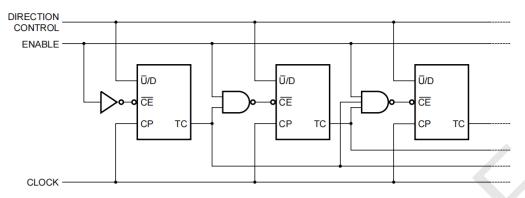
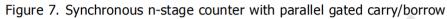
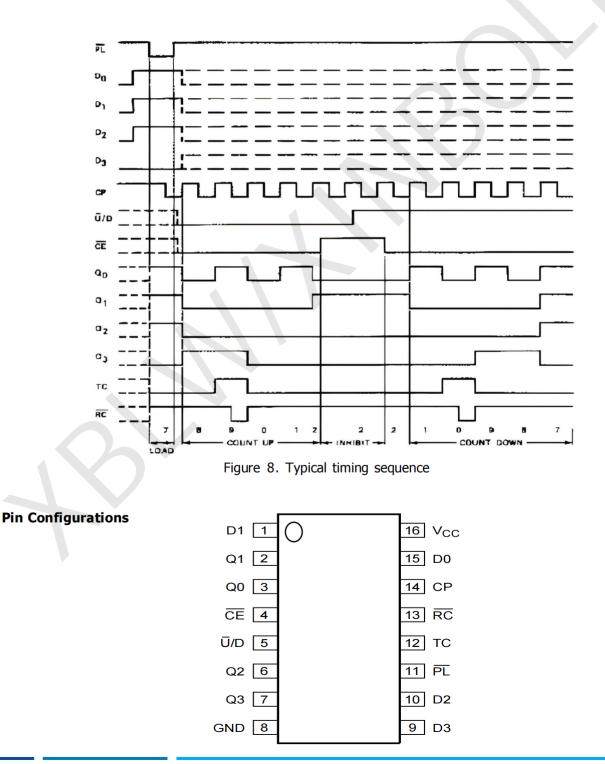


Figure 5.N-stage ripple counter using ripple clock


Figure 6. Synchronous n-stage counter using ripple carry/borrow

XBLW SN74LS190 Presettable Synchronous BCD Decade up/down Counter

XBLW Version 2.0

Pin Description

Pin No.	Pin Name	Description
1	D1	data input
2	Q1	flip-flop output
3	Q0	flip-flop output
4	ĊĒ	count enable input (active LOW)
5	Ū/D	up/down input
6	Q2	flip-flop output
7	Q3	flip-flop output
8	GND	ground (0V)
9	D3	data input
10	D2	data input
11	ΡĹ	parallel load input (active LOW)
12	TC	terminal count output
13	RC	ripple clock output (active LOW)
14	СР	clock input (LOW-to-HIGH, edge-triggered)
15	D0	data input
16	V _{CC}	supply voltage

Function Table

		Input				Output
Operating mode	PL	Ū/D	CE	СР	Dn	Qn
nevellet lead	L	X	Х	Х	L	L
parallel load	L	X	X	Х	Н	Н
count up	Н	L	I	1	Х	count up
countdown	н	Н	I	↑ (Х	countdown
hold (do nothing)	Н	X	Н	Х	Х	no change

Note: H=HIGH voltage level; L=LOW voltage level; X=don't care;

↑=LOW-to-HIGH clock;I=LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.

	Input			Terminal c	ount state		Ou	tput
Ū/D	ĊĒ	СР	Q0	Q1	Q2	Q3	тс	RC
Н	Н	Х	Н	Х	Х	Н	L	Н
L	Н	Х	Н	X	X	Н	Н	Н
L	L		Н	X	X	н	l	
L	Н	Х	L	L	L	L	L	Н
Н	Н	Х	L	L	L	L	Н	Н
Н	L		L	L	L	L	l	

Note:

[1] H=HIGH voltage level; L=LOW voltage level; X=don't care.

[2] ____ =one LOW level output pulse

[3] = TC goes LOW on a LOW-to-HIGH clock transition.

Electrical Parameter

Absolute Maximum Ratings

(Voltages are referenced to GND(ground=0V), unless otherwise specified.)

Parameter	Symbol	Cond	itions	Min.	Max.	Unit
supply voltage	Vcc		-	-0.5	+7.0	V
input clamping current	I _{IK}	$V_{\rm I}$ < -0.5V or	-	±20	mA	
output clamping current	I _{OK}	$V_{\rm O}$ < -0.5V or V	-	±20	mA	
output current	I _O	Vo= -0.5V t	-	±25	mA	
supply current	Icc		-	+50	mA	
ground current			-	-50		mA
storage temperature	T _{stg}		-	-65	+150	°C
total power dissipation	P _{tot}				500	mW
Soldering temperature	Τι	10s DIP SOP/TSSOP			45 60	°C

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	Vcc		2.0	5.0	6.0	V
input voltage	VI		0	-	Vcc	V
output voltage	Vo		0	-	Vcc	V
		V _{CC} =2.0V	-	-	625	ns/V
input transition rise and fall rate	Δt/ΔV	V _{CC} =4.5V	-	1.67	139	ns/V
		V _{CC} =6.0V	-	-	83	ns/V
ambient temperature	T _{amb}	-	-20	-	+85	°C

DC Characteristics 1

 $(T_{amb}=25 \,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit					
		V	cc=2.0V	1.5	1.2	-	V					
	Mari	V	cc=4.5V	3.15	2.4	-	V					
HIGH-level input voltage VIH LOW-level input voltage VIL HIGH-level output voltage VOH LOW-level output voltage VOL input leakage T	V IH	V	cc=6.0V	4.2	3.2	-	V					
			cc=2.0V	-	0.8	0.5	V					
	Vu	V	cc=4.5V	-	2.1	1.35	V					
voltage	VIL	V	cc=6.0V	-	2.8	1.8	V					
			Io=-20uA; Vcc=2.0V	1.9	2.0	-	V					
HIGH-level output voltage			I_0 =-20uA; V _{CC} =4.5V	4.4	4.5	-	V					
	Vон	$V_{\rm I}$ = $V_{\rm IH}$ or $V_{\rm IL}$	Io=-20uA; Vcc=6.0V	5.9	6.0	-	V					
			Io=-4.0mA; Vcc=4.5V	3.98	4.32	-	V					
			I ₀ =-5.2mA; V _{CC} =6.0V	5.48	5.81	-	V					
								$I_0=20uA; V_{CC}=2.0V$	-	0	0.1	V
			I ₀ =20uA; V _{CC} =4.5V	-	0	0.1	V					
	Vol	$V_{\rm I}$ = $V_{\rm IH}$ or $V_{\rm IL}$	$I_0=20uA; V_{CC}=6.0V$	7-	0	0.1	V					
output voltage			I ₀ =4.0mA; V _{cc} =4.5V	-	0.15	0.26	V					
			I ₀ =5.2mA; V _{CC} =6.0V	-	0.16	0.26	V					
input leakage current	I	VI=VCC or	GND; Vcc=6.0V	-	-	±1.0	uA					
supply current	I _{CC}	VI=VCC or GNI	D; Io=0A; Vcc=6.0V	-	-	8.0	uA					
input capacitance	CI	-		-	3.5	-	pF					

DC Characteristics 2

(T_{amb}=-20°C to +85°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		V _{CC} =2.0V		1.5	-	-	V
HIGH-level input voltage	VIH	V	/cc=4.5V	3.15	-	-	V
input voitage	VIH	V	/cc=6.0V	4.2	-	-	V
		Vcc=2.0V		-	-	0.5	V
LOW-level input voltage V _{IL}	VIL	V	/cc=4.5V	-	-	1.35	V
input voltage	VIL	V	V _{CC} =6.0V		-	1.8	V
	HIGH-level V _{OH} utput voltage		Io=-20uA; Vcc=2.0V	1.9	-	-	V
		$V_{\rm I} = V_{\rm IH}$ or $V_{\rm IL}$	Io=-20uA; Vcc=4.5V	4.4	-	-	V
			Io=-20uA; Vcc=6.0V	5.9	-	-	V
output voltage			Io=-4.0mA; Vcc=4.5V	3.84	-	-	V
			Io=-5.2mA; Vcc=6.0V	5.34	-	-	V
			Io=20uA; Vcc=2.0V		-	- - 0.5 1.35 1.8 - - -	V
			Io=20uA; Vcc=4.5V	-	-	0.1	V
LOW-level output voltage	Vol	$V_{\rm I}~=~V_{\rm IH}$ or $V_{\rm IL}$	Io=20uA; Vcc=6.0V	-	-	0.1	V
output voltage			Io=4.0mA; Vcc=4.5V	-	-	0.33	V
			Io=5.2mA; Vcc=6.0V	-	-	0.33	V
input leakage current	I	VI=VCC or	_	-	±1.0	uA	
supply current	Icc	VI=VCC or GN	D; Io=0A; Vcc=6.0V	-	-	80	uA

AC Characteristics 1

($T_{amb}=25^{\circ}C$, GND=0V; $t_r=t_f=6ns$; $C_L=50pF$, unless otherwise specified.)

Parameter	Symbol	Con	ditions	Min.	Тур.	Max.	Unit
			$V_{CC}=2.0V$	-	72	220	ns
		CP to Qn;	V _{CC} =4.5V	-	26	44	ns
		see Figure 10	$V_{CC}=5.0V; C_L=15pF$	-	22	-	ns
			$V_{CC}=6.0V$	-	21	37	ns
			$V_{CC}=2.0V$	-	83	255	ns
		CP to TC; see Figure 10	$V_{CC}=4.5V$	-	30	51	ns
		see ngule 10	$V_{CC}=6.0V$	-	24	43	ns
			$V_{CC}=2.0V$	-	44	150	ns
		CP to \overline{RC} ;	$V_{CC}=4.5V$	-	16	30	ns
		see Figure 11	$V_{CC}=6.0V$	-	13	26	ns
			$V_{CC}=2.0V$	-	33	130	ns
	t _{pd}	CE to RC;	Vcc=4.5V		12	26	ns
propagation delay		see Figure 11	$V_{CC}=6.0V$	-	10	22	ns
		_	V _{CC} =2.0V	-	63	220	ns
		Dn to Qn; see Figure 12	Vcc=4.5V	-	23	44	ns
		see Figure 12	$V_{CC}=6.0V$	-	18	37	ns
			Vcc=2.0V	-	63	220	ns
		PL to Qn; see Figure 13	$V_{CC}=4.5V$	-	23	44	ns
		See Figure 15	Vcc=6.0V	-	18	37	ns
		Ū/D to TC; see Figure 14	Vcc=2.0V	-	44	190	ns
			V _{cc} =4.5V	-	16	38	ns
			$V_{CC}=6.0V$	-	13	32	ns
		U/D to RC; see Figure 14	V _{cc} =2.0V	-	50	210	ns
			V _{CC} =4.5V	-	18	42	ns
			$V_{CC}=6.0V$	-	14	36	ns
			$V_{CC}=2.0V$	-	19	75	ns
transition time	tt	see Figure 15	V _{CC} =4.5V	-	7	15	ns
			$V_{CC}=6.0V$	-	6	13	ns
		CP; HIGH or	$V_{CC}=2.0V$	155	28	-	ns
		LOW;	V _{CC} =4.5V	31	10	-	ns
		see Figure 10	$V_{CC}=6.0V$	26	8	-	ns
pulse width	tw		V _{CC} =2.0V	100	25	-	ns
		PL; LOW;	V _{CC} =4.5V	20	9	-	ns
		see Figure 15	$V_{CC}=6.0V$	17	7	-	ns
		_	$V_{CC}=2.0V$	35	8	-	ns
recovery time	t _{rec}	PL to CP;	V _{CC} =4.5V	7	3	-	ns
		see Figure 15	V _{CC} =6.0V	6	2	-	ns
set-up time	t _{su}	Ū/D to CP;	V _{CC} =2.0V	205	61	-	ns

		see Figure 16	Vcc=4.5V	41	22	-	ns
		See Figure 10	$V_{CC}=6.0V$	35	18	-	ns
		_	V _{CC} =2.0V	100	19	-	ns
		Dn to PL;	V _{CC} =4.5V	20	7	-	ns
		see Figure 17	Vcc=6.0V	17	6	-	ns
		_	Vcc=2.0V	140	39	-	ns
		CE to CP; see Figure 16	Vcc=4.5V	28	14	-	ns
			Vcc=6.0V	24	11	-	ns
		_	Vcc=2.0V	0	-44	-	ns
		U/D to CP;	Vcc=4.5V	0	-16	-	ns
		see Figure 16	Vcc=6.0V	0	-13	-	ns
		Dn to PL; see Figure 17	Vcc=2.0V	0	-14	-	ns
hold time	th		Vcc=4.5V	0	-5		ns
			V _{CC} =6.0V	0	-4	-	ns
		_	Vcc=2.0V	0	-19	-	ns
		CE to CP; see	V _{cc} =4.5V	0	-7	-	ns
		Figure 16	V _{CC} =6.0V	0	-6	-	ns
			V _{cc} =2.0V	3.0	8.3	-	MHz
maximum	6	CP;	Vcc=4.5V	15	25	-	MHz
frequency	f _{max}	see Figure 10	$V_{CC}=5.0V; C_L=15pF$	-	28	-	MHz
			V _{cc} =6.0V	18	30	-	MHz
power dissipation capacitance	Cpd	VI=G	ND to Vcc	-	36	-	pF

Note:

 $[\ 1]\ t_{\text{pd}}$ is the same as t_{PLH} and $t_{\text{PHL}}.$

[2] t_t is the same as t_{THL} and t_{TLH} .

[3] C_{PD} isused to determine the dynamic power dissipation (P_D in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

- f_i =input frequency in MHz;
- f_o =output frequency in MHz;
- $C_{\text{L}}\text{=}\text{output}$ load capacitance in pF;
- V_{cc}=supply voltage in V;
- $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

AC Characteristics 2

(T_{amb} =-20°C to +85°C, GND=0V; t_r = t_f =6ns; CL=50pF, unless otherwise specified.)

Parameter	Symbol	Cond	litions	Min.	Тур.	Max.	Unit					
			Vcc=2.0V	-	-	275	ns					
		CP to Qn; see Figure 10	Vcc=4.5V	-	-	55	ns					
		See Figure 10	Vcc=6.0V	-	-	47	ns					
			V _{CC} =2.0V	-	-	320	ns					
		CP to TC; see Figure 10	Vcc=4.5V	-	-	64	ns					
		See rigure 10	V _{CC} =6.0V	-	-	54	ns					
		CP to RC; see Figure 11	Vcc=2.0V	-	-	190	ns					
			Vcc=4.5V	-	-	38	ns					
			Vcc=6.0V	-	-	33	ns					
			Vcc=2.0V	-	-	165	ns					
		CE to RC;	Vcc=4.5V		-	33	ns					
	t _{pd}	see Figure 11	Vcc=6.0V		-	28	ns					
			Vcc=2.0V	-	-	275	ns					
propagation delay		Dn to Qn; see Figure 12	Vcc=4.5V	-	-	55	ns					
		See i igule 12	$V_{CC}=6.0V$	- /	-	47	ns					
		PL to Qn;	Vcc=2.0V	-	-	275	ns					
			Vcc=4.5V	- (-	55	ns					
		see Figure 13	$V_{CC}=6.0V$	-	-	47	ns					
			Vcc=2.0V	-	-	240	ns					
		U/D to TC;	Vcc=4.5V	-	-	48	ns					
		see Figure 14	Vcc=6.0V	-	-	41	ns					
		U/D to RC; see Figure 14	V _{CC} =2.0V	-	-	265	ns					
			Vcc=4.5V	-	-	53	ns					
			V _{CC} =6.0V	-	-	45	ns					
								V _{CC} =2.0V	-	-	95	ns
			V _{CC} =4.5V	-	-	19	ns					
transition time	tt	see Figure 15	V _{CC} =6.0V	-	-	16	ns					
			V _{CC} =2.0V	195	_	-	ns					
		CP; HIGH or LOW;	Vcc=4.5V	39	_	-	ns					
		see Figure 10	V _{CC} =6.0V	33	-	-	ns					
			V _{CC} =2.0V	125	_	_	ns					
pulse width	tw	PL; LOW;	V _{CC} =4.5V	25	-	-	ns					
		see Figure 15	V _{CC} =6.0V	23	-	-	ns					
	-	PL to CP;	V _{CC} =0.0V	45	_	-	ns					
		see Figure 15	Vcc=4.5V	9	-	_	ns					
recovery time	t _{rec}		V _{CC} =6.0V	8	_	-	ns					
			V _{CC} =0.0V	255	_	-	ns					
		U/D to CP;	V _{CC} =2.0V V _{CC} =4.5V	51	-	-						
		see Figure 16	Vcc=4.5V Vcc=6.0V	43	-		ns					
						-	ns					
		Dn to PL;	$V_{CC}=2.0V$	125	-	-	ns					
		see Figure 17	V _{cc} =4.5V	25	-	-	ns					
set-up time	t _{su}		V _{CC} =6.0V	21	-	-	ns					
		CE to CP;	V _{CC} =2.0V	175	-	-	ns					
			see Figure 16	$V_{CC}=4.5V$	35	-	-	ns				

XBLW SN74LS190

Presettable Synchronous BCD Decade up/down Counter

			Vcc=6.0V	30	-	-	ns
		U/D to CP; see Figure 16	$V_{CC}=2.0V$	0	-	-	ns
hold time	th		Vcc=4.5V	0	-	-	ns
			$V_{CC}=6.0V$	0	-	-	ns
		Dn to PL; see Figure 17	$V_{CC}=2.0V$	0	-	-	ns
			V _{CC} =4.5V	0	-	-	ns
			V _{CC} =6.0V	0	-	-	ns
		CE to CP; see Figure 16	$V_{CC}=2.0V$	0	-	-	ns
			V _{CC} =4.5V	0	-	-	ns
			V _{CC} =6.0V	0	-	-	ns
maximum frequency	f _{max}	CP; see Figure 10	$V_{CC}=2.0V$	2.4	-	-	MHz
			V _{CC} =4.5V	12	-	-	MHz
		See Figure 10	$V_{CC}=6.0V$	14	-	-	MHz

Note:

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

[2] t_t is the same as t_{THL} and t_{TLH} .

Testing Circuit

AC Testing Circuit

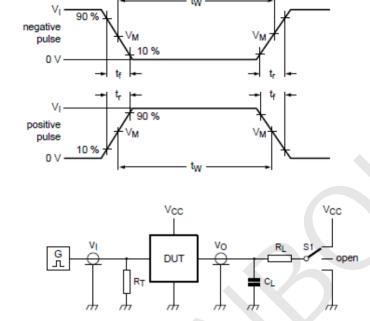


Figure 9. Test circuit for measuring switching times

Definitions for test circuit:

 C_L =Load capacitance including jig and probe capacitance.

 R_T =Termination resistance should be equal to the output impedance Z_0 of the pulse generator. R_L =Load resistance.

S1 = Test selection switch

AC Testing Waveforms

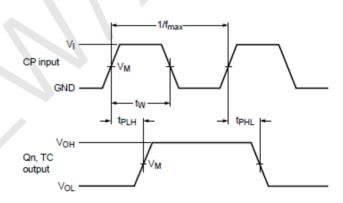


Figure 10. The clock input (CP) to outputs (Qn, TC) propagation delays, clock pulse width and maximum clock frequency

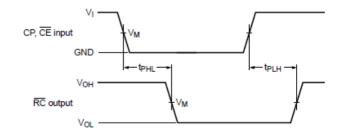
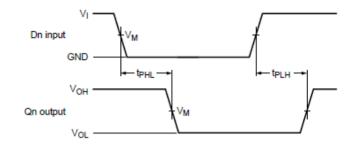
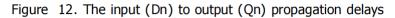




Figure 11. The clock and count enable inputs (CP, \overline{CE}) to ripple clock output (\overline{RC}) propagation delays

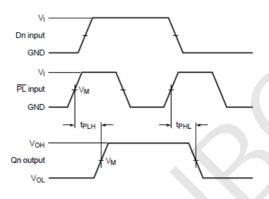


Figure 13. The parallel load input (\overline{PL}) to output (Qn) propagation delays

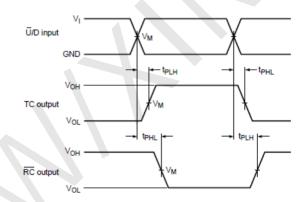


Figure 14. The up/down count input (\overline{U}/D) to terminal count and ripple clock output (TC, \overline{RC}) propagation delays

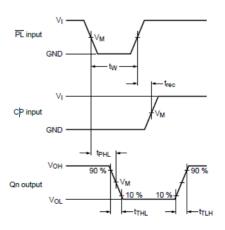


Figure 15. The parallel load input (\overline{PL}) to clock (CP) recovery times, parallel load pulse width and output (Qn) transition times

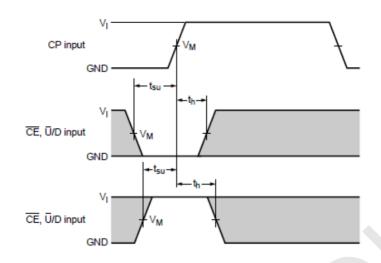
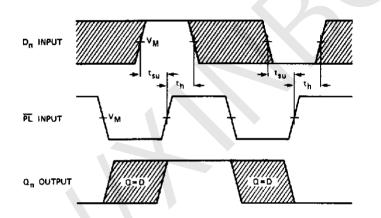
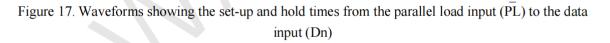
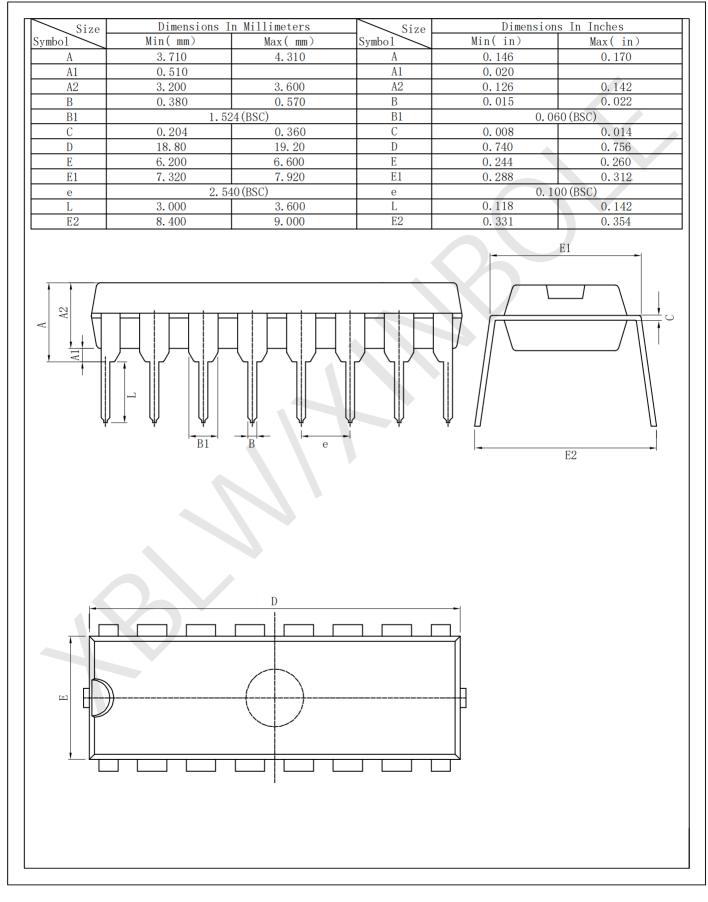




Figure 16. The count enable and up/down count inputs (\overline{CE} , \overline{U}/D) to clock input (CP) set-up and hold times

Measurement Points

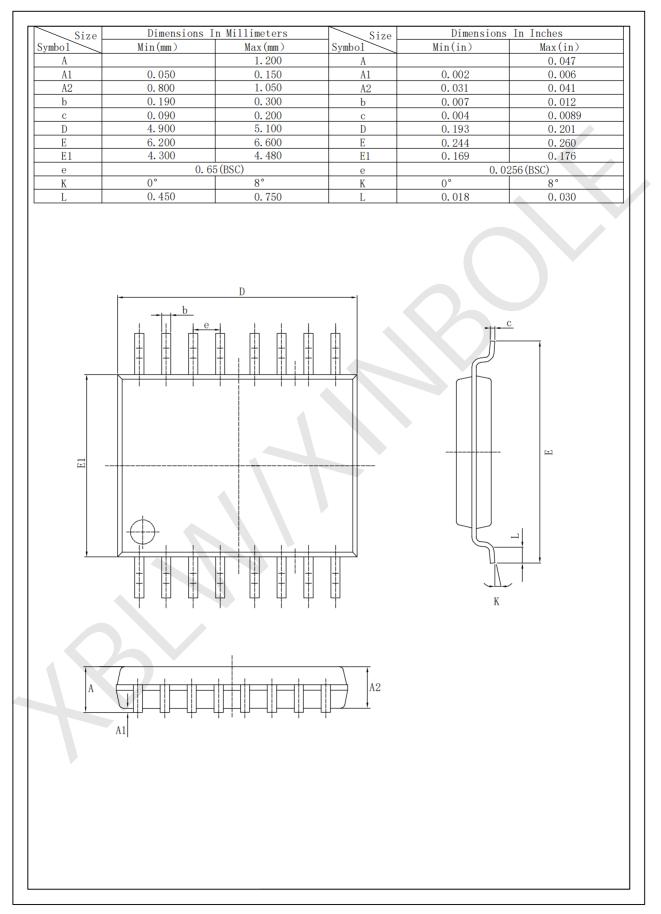
Туре	Input Output	
Гуре	νм	V _M
SN74LS190	0.5 ×V _{CC}	0.5 ×V _{CC}


Test Data

Tuno	Input		Load		S1 position
Туре	VI	tr,tf	CL	RL	tplh, tphl
SN74LS190	Vcc	6ns	15pF, 50pF	1kΩ	open

PackageInformation

\cdot DIP-16



· SOP-16

Size	Dimensions In Millimeters			Size	Dimer	nsions In Inc	ches
Symbol	Min(mm)	Nom(mm)	Max(mm)	Symbol	Min(in)	Nom(in)	Max(in)
A	1.500	1.600	1.700	A	0.059	0.063	0.067
A1	0.100	0.150	0.250	A1	0.004	0.006	0.010
A2	1.400	1. 450	1. 500	A2	0.055	0.057	0.059
A3	0.600	0.650	0.700	A3	0.024	0.026	0.028
b	0.300	0.400	0.500	b	0.024	0.020	0.028
	0. 300	0.200	0.250		0.012	0.010	0.020
c				C			
D	9.800	9.900	10.00	D	0.386	0. 390	0.394
E	5.800	6.000	6.200	Е	0.228	0.236	0.244
E1	3.850	3.900	3.950	E1	0.152	0.154	0.156
е		1. 27 (BSC)		е		0.050 (BSC)	
L	0.500	0.600	0.700	L	0.020	0.024	0.028
L1		1.05(BSC)		L1		0.041 (BSC)	
θ	0°	4°	8°	θ	0°	4°	8°
				A ^{2.0}			
		\int					

· TSS0P-16

Statement

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW product has not been licensed for life support, military and aerospace applications, and therefore XBLW is not responsible for any consequences arising from its use in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)